
A Geometric Theory of Outliers and Perturbation

by

John D. Dunagan

Bachelor of Science in Mathematics with Computer Science
Massachusetts Institute of Technology, 1998

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© John D. Dunagan, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author .
Department of Mathematics

May 3, 2002

Certified by. .
Santosh Vempala

Assistant Professor
Thesis Supervisor

Accepted by .
Chair, Applied Mathematics

Accepted by .
Tomasz S. Mrowka

Chairman, Department Committee on Graduate Students

2

A Geometric Theory of Outliers and Perturbation
by

John D. Dunagan

Submitted to the Department of Mathematics
on May 3, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We develop a new understanding of outliers and the behavior of linear programs under
perturbation. Outliers are ubiquitous in scientific theory and practice. We analyze a simple
algorithm for removal of outliers from a high-dimensional data set and show the algorithm
to be asymptotically good. We extend this result to distributions that we can access only
by sampling, and also to the optimization version of the problem. Our results cover both
the discrete and continuous cases. This is joint work with Santosh Vempala.

The complexity of solving linear programs has interested researchers for half a century
now. We show that an arbitrary linear program subject to a small random relative pertur-
bation has good condition number with high probability, and hence is easy to solve. This
is joint work with Avrim Blum, Daniel Spielman, and Shang-Hua Teng. This result forms
part of the smoothed analysis project initiated by Spielman and Teng to better explain
mathematically the observed performance of algorithms.

Thesis Supervisor: Santosh Vempala
Title: Assistant Professor

3

4

Acknowledgments

The greatest source of contentment and purpose in my life is my wife, Heather. I also
thank my family for the nurturing they have provided me over many years and continue to
provide.

My mathematical education has long been in good hands. Before my teenage years, my
parents had the foresight to suggest that some of their college math books would make good
reading. The three summers I spent in the TIP program at Duke University contributed
uniquely to both my social and mathematical growth. The middle school and high school
math faculty at Greenhill School were both kind and encouraging. I particularly appreciate
the year Dr. Barbara Currier spent teaching a class of first three students, then two, then
one (me).

At MIT, site of both my undergraduate and graduate studies, my cup overflowed with
opportunity. The faculty here have spent many hours giving me advice both mathematical
and not. I am indebted to the advising I received from my earliest days at the hands of
Hartley Rogers and Tom Leighton, the opportunity to work several summers under Bonnie
Berger, the wonderful courses taught by Mike Sipser, Dan Spielman and David Karger, and
the fruitful collaboration with Dan Spielman, Shang-Hua Teng, and Avrim Blum.

The most significant influence on my mathematical development has been my advisor,
Santosh Vempala. From him I have not just learned material – I think about math differently
because of our many hours together, and the change has been wholely for the good. The
opportunity to work with him has been a blessing.

5

6

Contents

1 Introduction 11

1.1 Outliers . 11
1.1.1 Outliers in High-Dimensional Space 12
1.1.2 Organization of Outliers Results . 14

1.2 Perturbations to Linear Programs . 15
1.2.1 The Model of Perturbation . 16
1.2.2 Renegar’s Condition Number for Linear Programming 16
1.2.3 Algorithms using the Condition Number 19
1.2.4 Organization of Perturbation Results 19

2 Outliers 21

2.1 Algorithms for Outlier Removal . 21
2.2 Outlier Removal over Arbitrary Support . 22
2.3 Outlier Removal over Discrete Support . 27
2.4 Efficiency . 35

2.4.1 Point sets . 35
2.4.2 Arbitrary distributions . 37

2.5 A Matching Lower Bound . 42
2.6 An Approximation Algorithm . 45
2.7 Standard Deviations from the Mean . 46
2.8 An Implementation . 50
2.9 Miscellanea . 50

2.9.1 Interpolating Between Discrete and Arbitrary Support 51
2.9.2 Discrete Support: Rationals versus Integers 51
2.9.3 Some Further Thoughts on Optimization 51
2.9.4 Robust Statistics . 52

2.10 Some Properties of Matrices . 54

3 Perturbations 57

3.1 Notation, Definitions, Main Result . 57
3.1.1 Definition of Condition Number for Linear Programming 58

7

3.1.2 Smoothed Analysis of the Condition Number 59
3.2 Primal Condition Number . 60

3.2.1 Primal number, feasible case . 62
3.2.2 Primal number, infeasible case . 64
3.2.3 Primal number, both cases . 69

3.3 Dual Condition Number . 70
3.4 Combining the Primal and Dual Analyses 76
3.5 Future Avenues of Investigation . 77
3.6 The Perceptron Algorithm . 78

3.6.1 Algorithm Definition and Analysis 78
3.6.2 The Input Mapping . 79
3.6.3 Wiggle Room . 80
3.6.4 Smoothed Analysis of the Perceptron Algorithm 80

3.7 Alternative Models of Perturbation . 82
3.7.1 The Original Spielman-Teng Model 82
3.7.2 Zero-Preserving Perturbations . 82
3.7.3 Non-Gaussian Perturbations . 83

3.8 Technical Matters . 84
3.8.1 A Bound on the Sum of Gaussian Random Variables 84
3.8.2 An Application of the Brunn-Minkowski Theory 85
3.8.3 Small Boundaries are Easily Missed 87

8

List of Figures

1-1 Defining Outliers . 13

2-1 Lower Bound Constructions . 43
2-2 Weaker Support Counterexample . 51

3-1 Worst case K for lemma 29. 86

9

10

Chapter 1

Introduction

In this thesis, we study outliers and linear programs from a geometric setting. Outliers
and linear programs are fundamental to machine learning and combinatorial optimization,
two fields connected in a vibrant and ongoing dialogue. We develop similar geometric and
probabilistic techniques to illuminate the two subjects.

The theory of outliers presented here was jointly developed with my thesis advisor, San-
tosh Vempala. Much of the theory originally appeared in a conference paper and subsequent
journal version[DV 01]. The theory of perturbations to linear programs was developed over
the course of two papers, one with Avrim Blum[BD 02], and one with Daniel Spielman and
Shang-Hua Teng[DST 02]. However, this work on perturbations also benefitted from the
comments of my advisor.

1.1 Outliers

Applied mathematicians often want to state that some property is typical of a data set. We
commonly label as outliers the data points where the given property does not hold. In a
machine learning context, outliers can dramatically slow the convergence of a learning algo-
rithm, or even cause it to converge to a suboptimal hypothesis. In a practical setting, our
understanding of a phenomenon might be enhanced by considering the outlier-free subset
of the data, or the outliers themselves might constitute the phenomena of interest. In the
classic setting of a scientist collecting data from an experiment that is sometimes contam-
inated by an infrequent external process, an outlier-free subset of the data is the desired
object. The study of this external process would be the study of the outliers themselves. In
the field of robust statistics, the goal is to construct statistics of a data set that will not be
unduly influenced by the presence of a small contaminating process. Often, robust statistics
are weighted averages of the examples, where outlying examples are given less weight.

To discuss the problem of finding outliers, we need a precise definition of an outlier. In
the case of one-dimensional data, it is common to call something an outlier if it is far away
from most of the data, where the measure of distance is normalized by some measure of
the scatter of the data set. In particular, we define a point x to be a γ2-outlier if x is more
than γ standard deviations from the mean of the data set.

A natural algorithm for identifying and removing outliers is to fix γ, look for every γ2-
outlier, and remove those points. However, the remaining data set might still have outliers.
The mean and standard deviation of the remaining data set may have changed, and points
that were not outliers with respect to the original data set may now be outliers with respect

11

to the remaining data set.
If we had instead proposed to define an outlier in terms of the standard deviation of

the initial data set even after removing some points, the definition would have serious
limitations. Most pressingly, a single outlier might “mask” the presence of other outliers.
To see this, suppose we have one point a small distance away from the origin, a second
point very far away, and many points right at the origin. Then the second point would
be correctly identified as an outlier, but the first point might not be so identified. It is
straightforward to construct a model for noise in our input data that leads to this problem.
A second drawback to the alternative definition is that it does not support an application
to learning theory that we will discuss later in this thesis. A third drawback from our
viewpoint is that the relevant mathematics for the alternative definition are already well
understood.

The definition we have adopted makes no mention of a hypothesis that can vary, even
though we initially spoke of outliers as being points which fail some hypothesis. This
invariance to the particular hypothesis that we will eventually learn is a desirable property
when it is possible; it allows us to separate the tasks of learning and outlier removal. It
will turn out that our definition of an outlier aids in the learning of linear separators, the
most important hypothesis class in machine learning, in a manner that is invariant to the
particular hypothesis found at the end.

An obvious next candidate algorithm is to apply the first natural algorithm iteratively,
identifying and removing outliers repeatedly until we are done. When this iterative algo-
rithm terminates, it clearly results in a γ2-outlier free subset of the data. It just remains
to bound the amount of the data set thrown away by the algorithm.

In this thesis we show that a natural generalization of this iterative algorithm is asymp-
totically optimal for the n-dimensional outlier removal problem. Before proceeding to dis-
cuss the algorithm, we discuss the n-dimensional problem in more detail.

1.1.1 Outliers in High-Dimensional Space

We will assume throughout that the data consists of points (or a distribution) in n-
dimensional Euclidean space, hereafter abbreviated by Rn. In figure 1-1, the top picture
depicts the definition of a γ2-outlier that we adopted for one-dimensional data: the data
points are the solid circles, and the mean, along with the mean plus or minus one standard
deviation, are the hash marks. The leftmost point is 1.86 standard deviations away from
the mean.

In some settings it may be desirable to consider standard deviations from the mean,
and in other settings it may be desirable to consider squared distance from a fixed reference
point. For most of our discussion of outliers, we will measure squared distance from a
fixed reference point, which we take without loss of generality to be the origin. This will
simplify the exposition, and it is in this form that we need the result in order to apply it
to the learning problem of [BFKV 99]. In section 2.7, we will translate our results back to
the setting where we measure standard deviations from the mean of the data, and prove
analogous theorems for this case.

The following generalization of the one-dimensional outlier definition to higher dimen-
sions was used in [BFKV 99]. Let P be a set of points in Rn.

Definition 1 (β-Outlier) A point x in P is called a β-outlier if there exists a vector w
such that the squared length of x along w is more than β times the average squared length

12

of P along w, i.e. if
(wTx)2 > βEx∈P [(wTx)2]

Note that (wTx)2 is the squared distance along w from the origin, and clearly β = γ2 in the
one-dimensional case. In figure 1-1, the bottom two pictures show how different points may
be the furthest outliers for different choices of w. In each graph, the solid circles are the data
points, the line is the direction w, and the hash marks along the line are the projections of
the data points onto the line.

Figure 1-1: Defining Outliers

This definition of an outlier in Rn has a long history in statistics and machine learning.
An equivalent definition using terminology from the field of machine learning is “a point is
a γ2-outlier if it has Mahalanobis distance greater than γ.” A statistician might say “after
normalizing by the covariance of the data, the point is more than γ away from the origin.”
The constructive procedure for identifying outliers in section 2.1 shows the equivalence of
our definition to these two other definitions.

The first problem we address is the following: does there exist a small subset of (a point
set) P whose removal ensures that the remaining set has no outliers? More precisely, what
is the smallest β such that on removing a subset consisting of at most an ε fraction of P ,
the remaining set has no β-outliers (with respect to the remaining set)?

Our main result about outlier removal is that β can be made quite small as a function
of ε. Let Znb denote the set of n-dimensional b-bit integers, {1, . . . , 2b}n.
Theorem 1 (Outlier Removal over Integer Support) 1 Let µ be a probability distri-
bution on Znb . Then for every ε > 0, there exists S and

β = O
(n
ε
(b+ log

n

ε
)
)

1An early version of this work[DV 01] claimed a slightly different version of theorem 1 with an insuffi-
ciently strong hypothesis.

13

such that
(i) µ(S) ≥ 1− ε
(ii) max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S] for all w ∈ Rn

The hypothesis of theorem 1 requires that the probability distribution under consider-
ation be discretized in a certain way. Both the modern computers in widespread use today
and the Turing machine model that has provided a basis for the mathematical study of
computation represent numbers using finite precision, suggesting that discrete probability
distributions are important both practically and theoretically. We prove a similar theorem
for the continuous case, but handling the discrete case requires additional mathematical
insights.

1.1.2 Organization of Outliers Results

The proof of theorem 1 (section 2.3) is constructive. Before proving theorem 1, we will
prove a similar theorem about distributions with arbitrary support (theorem 2, section 2.2).
Although the hypothesis on the support of the distribution in theorem 2 is much weaker,
we need an additional assumption. The proofs of theorems 1 and 2 make use of the same
principal idea.

In section 2.1, we describe (two variants of) an algorithm for outlier removal. The
theorems can be proven using either variant. Although the theorems are not obvious,
the algorithm is extremely simple. To convince the reader of this, we include a matlab
implementation of the algorithm in section 2.8.

For a point set withm points (m > n) the algorithm runs in O(m2n) time. In section 2.4
we show that the algorithm can also be used on an unknown distribution if it is allowed
to draw random samples from the distribution. The number of samples required is Õ(n

2b
ε)

and the running time is Õ(b
2n5

εδ4
) for accuracy (1 + δ).

One variant of our algorithm is identical to the algorithm of [BFKV 99], the immediate
inspiration for our work. The bound on β in theorems 1 and 2 improves on the previous
best bound of O(n

7b
ε) given in [BFKV 99]. There it was used as a crucial component in the

first polytime algorithm for learning linear threshold functions in the presence of random
noise. Due to the high value of β, the bound on the running time of the learning algorithm,
although polynomial, is a somewhat prohibitive Õ(n28). In contrast, our theorem implies
an improved bound of Õ(n5) for learning linear thresholds from arbitrary distributions in
the presence of random noise. Further, our bound on β is asymptotically the best possible.
This is shown in section 2.5 by an example where for any ε < 1

2 , a bound on β better than
Ω(nε (b− log 1

ε)) is not possible.
Our main theorem gives an extremal bound on β. A natural follow-up question is

the complexity of achieving the best possible β for any particular distribution. Given a
distribution µ and a parameter ε, we want to find a subset of probability at most ε whose
removal leaves an outlier-free set with the smallest possible β. We show this question to
be NP-hard even in the one-dimensional case by a reduction to subset-sum. In section 2.6,
we prove that our algorithm achieves a (1

1−ε)-approximation to the best possible β for any
given ε.

In some cases, it may be desirable to translate the data set so that the origin coin-
cides with the mean, rather than having a fixed origin. We prove the following corollary
for standard deviations from the mean in section 2.7. Let µ be a probability distribution
on Znb . Then for any ε > 0, there exists a (1 − ε) fraction of the distribution such that

14

along every direction, no point is further away from the mean than O(
√
n
ε (b+ log

n
ε)) stan-

dard deviations in that direction. We also give a (1−ε
1−3ε)-approximation algorithm for the

corresponding optimization problem.
In section 2.9, we present some further observations about outlier removal, including

a connection to robust statistics. In section 2.10, we prove some technical properties of
matrices that are used elsewhere in the thesis.

1.2 Perturbations to Linear Programs

Linear programs are the earliest and greatest success of combinatorial optimization[Chv 83,
pp7-9]. The field of combinatorial optimization sprang in large part from the empirical
demonstration that linear programs could be used to guide the more efficient allocation
of resources in a variety of settings[Chv 83, pp7-9]. We will briefly discuss the history of
algorithms for solving linear programs, and then describe our contribution.

The analysis of algorithms for solving linear programs has been a subject of investigation
for over fifty years. Dantzig both suggested the use of linear programs for optimization and
proposed the first algorithm for solving linear programs, the simplex algorithm[Dan 51].
Many alternative pivot rules for use with the simplex algorithm have since been proposed,
as well as alteranative rules for choosing a starting vertex. The simplex algorithm is com-
binatorial in nature. Shortly after Dantzig’s initial work, Agmon proposed the perceptron
algorithm for solving linear programs[Agm 54]. The perceptron algorithm can be shown
to quickly solve a relaxation of the linear programming problem, but as the relaxation is
tightened, the perceptron algorithm takes an increasing amount of time to converge. The
perceptron algorithm uses the geometry of the linear program in a way that the simplex
algorithm does not.

Around the same time that polynomial time gained wide currency within the theoreti-
cal computer science and applied math community as a measure of algorithmic efficiency,
Klee and Minty showed that the simplex algorithm may require time exponential in the
number of variables and constraints[KM 72]. A few years later, Khachiyan proved that the
ellipsoid algorithm solved linear programs in polynomial time[Kha 79]. Karmarkar later
developed the interior point method for solving linear programs[Kar 84], and this has led
to a tremendous body of subsequent work.

Analysis of both the ellipsoid and interior point methods relied upon assumptions about
the bit-size of the data representation, and a number of people in the community, such
as Lenore Blum[Blu 90], suggested that geometric measures independent of the bit size
could be used to bound the performance of interior point methods. Renegar initiated this
line of work, translating the theory of interior point methods to the setting of numer-
ical and functional analysis by introducing the concept of condition number of a linear
program[Ren 94, Ren 95a, Ren 95b]. Since then, a number of other people have further
developed the theory of condition numbers for linear programs, and developed algorithms
that can be analyzed in terms of the condition number [CP 01, FE 00a, FE 00b, FE 01,
FN 01, FV 99, FV 00, Ver 96].

All of the previously cited analysis has been of the worst-case behavior of algorthms
for solving linear programs. Condition numbers represent a refinement of bit-size for the
purpose of describing problem difficulty, but there is no a-priori bound on the condition
number of a linear program given one as input.

A parallel line of inquiry arose to address the empirically observed fact that although the

15

simplex algorithm has poor worst-case complexity, in practice it runs remarkably quickly,
requiring a number of iterations nearly linear in the minimum of the number of constraints
or dimensions. Towards this end, a number of authors investigated the expected running
time of the simplex algorithm on a given distribution of linear programs[Adl 83, AKS 87,
AM 85, Bor 77, Bor 80, Hai 83, Meg 86, Mur 80, Sma 82, Sma 83, Tod 86, Tod 91]. In
one model of a random linear program, we generate the linear program by starting with
an arbitrary linear program and then randomly flipping the direction of every constraint.
In the other widely considered model, studied by Borgwardt, Smale, and Megiddo[Bor 77,
Bor 80, Sma 82, Sma 83, Meg 86], each constraint is drawn from a spherically symmetric
distribution.

1.2.1 The Model of Perturbation

In 2001, Spielman and Teng proposed a new model[ST 01]. In this new model, which they
dubbed smoothed analysis, they consider a small random perturbation to an arbitrary linear
program. Although similar to the model of Borgwardt, this model has an appealing feature
that the previous models do not: by varying the size of the perturbation, we may interpolate
between average-case and worst-case results. The other appealing feature of the smoothed
analysis model is best explained by a change in belief within our field about the nature of
reality.

Over the past few decades, the field of theoretical computer science has become acutely
aware that typical problem instances bare little resemblance to the random instances com-
monly generated by our mathematically tractable distributions. The task of characteriz-
ing the distribution of problem instances encountered in practice is now recognized as a
formidable one. A further discussion of this issue can be found in [ST 01], but we will try
to summarize: typical instances do not look like random instances; they might look like an
arbitrary instance subject to a small random perturbation. By considering a small random
perturbation to an arbitrary instance, the smoothed analysis model seeks to better describe
the observed performance of algorithms on real-world instances.

In their initial work, Spielman and Teng showed the simplex algorithm with shadow
vertex pivot rule to have polynomial smoothed complexity. This was both a significant
mathematical accomplishment, and a validation that the model, though significantly more
restrictive than previous models of a random linear program, still admitted interesting
average-case results.

In this thesis, we analyze a geometric quantity of the perturbed linear program. This
geometric quantity is the condition number, and it can be used to bound the performance
of the perceptron algorithm, the ellipsoid algorithm, and the many interior point methods.

We hope that this work both elucidates the smoothed analysis model and possibly
explains the distribution of condition numbers encountered in practice. We do not claim
that the model of a perturbed linear program considered here is the best possible description
of the distribution of problem instances encountered in practice. However, we have great
hope that this is a useful step in better describing the distribution of problem instances
encountered in practice, and the analysis of algorithms on such distributions.

1.2.2 Renegar’s Condition Number for Linear Programming

We begin by discussing condition numbers in general, and then Renegar’s condition number
for linear programming in particular. We then discuss smoothed analysis in some detail.

16

Condition numbers are ubiquitous in numerical analysis and scientific computing. For
many computational tasks with matrices, the ratio of the maximum and minimum eigenval-
ues of the matrix is a good condition number. For other tasks, such as solving a discretized
partial differential equation for given boundary conditions, a different condition number
may be defined. A condition number typically has two uses,

1. to estimate the sensitivity of the problem’s answer to error in the input, and

2. to bound the number of iterations required by an iterative method to achieve a given
degree of accuracy.

Analysis of algorithms using condition numbers may be interpreted as a parameterized
worst-case complexity analysis. For many iterative methods, the maximum number of
iterations is bounded by some function of the condition number, although the actual number
of iterations may be less. Thus condition number is a refinement of input size as a measure
of problem difficulty. Additionally, the condition number is typically bounded by some
function of the input size, where the input size includes both the number of input parameters
and the bit size required to represent these parameters, and so condition number bounds
typically imply worst-case complexity bounds in the standard Turing model of computation.

Another reason for the study of condition numbers is that:

Numerical analysis is the study of algorithms for the problems of continuous mathematics.2

For a continuous input domain, it may be unnatural to discretize the input in the prob-
lem definition. Condition numbers are well-defined for arbitrary real-valued inputs, where
measuring the input size in bits may not be possible. The fields of numerical analysis and
scientific computing consider such problems and inputs, and condition numbers have been
a pervasive underpinning of research in these fields.

Renegar [Ren 94] introduced a condition number for linear programs. In this work,
he suggested that the study of condition numbers for linear programming was a natural
outgrowth of the central role iterative solvers, particularly interior point methods, had
assumed in the study of algorithms for convex programming. A large body of further work,
detailed below, has developed on bounding the number of iterations required to solve a
given linear program as a function of the condition number. This analysis has included
both new bounds on old methods and the development of new algorithms.

Our work addresses the question of “what are likely values for the condition number?”
In particular, for a natural model of noise in the input data, we show that the condition
number is likely to be low. This addresses a question outside the scope of previous work
on the condition number for linear programs. The great body of work on how condition
number influences running time is an extensive foundation, and we hope to build another
layer underneath, on how noisy data leads to bounded condition number.

In [ST 01], Spielman and Teng showed that for an arbitrary linear program, a small
random relative perturbation of that program is solved by the simplex algorithm (with
the shadow vertex pivot rule) in polynomial time with very high probability. They also
expressed the hope in [ST 01] that their result might explain the observed good performance
of the simplex algorithm in practice: if your linear program is defined by a constraint matrix
drawn from noisy data, it will probably be one that is easily solved by the simplex algorithm.

2Lloyd Trefethen, November 1992 SIAM News.

17

The smoothed complexity model seeks to interpolate between worst-case and average-
case complexity analysis. By letting the size of the random perturbation to the data (i.e.,
the variance of the noise) become large, one obtains the traditional average-case complexity
measure. By letting the size of the random perturbation go to zero, one obtains the tradi-
tional worst-case complexity measure. In between, one obtains new theoretical results that
may also be practically meaningful.

The examples given above and the work in this chapter pertain to the smoothed analysis
of algorithms for linear programming. We use a two-step approach:

1. Bound the running time of an algorithm in terms of a condition number.

2. Perform a smoothed analysis of this condition number.

Step 1. has already been done (see subsection 1.2.3). Our main theorem accomplishes step
2.

We do not wish to give the impression that smoothed analysis is only meaningful for
linear programming, or even convex optimization problems. Recall that different problems
(matrix inversion, solving a partial differential equation, etc.) have different condition
numbers. Typically these condition numbers are defined to be (for any given problem
instance) the maximum ratio of the magnitude of change in the output to the magnitude of
change in the input. Many of these condition numbers have the property that the condition
number is low if the smallest relative change to the input data necessary for the problem
to be ill-posed is large. (Loosely speaking, a problem instance is ill-posed if an arbitrarily
small further change to the input data may yield an arbitrarily large change in the answer.
The linear programming condition number we consider here is defined to be the distance
to ill-posedness, and can then be shown to bound the magnitude of change in the output
due to change in the input.) For such condition numbers it may be the case that, from
any initial instance, a small random perturbation to that instance is quite likely to yield a
new instance that is not too close to ill-posedness. One exciting aspect of [ST 01] is that
it shows that the simplex algorithm fits into this general framework. This thesis shows the
same thing for the linear programming condition number. This phenomenon may be very
common (the condition number for matrix inverion is addressed in [ST 02]).

To give a preview of our results, we state a rough version of our main theorem without
constants or logarithmic factors.

Statement 1 (Smoothed Complexity of Renegar’s Condition Number) For an
arbitrary linear program defined by an appropriately scaled n-by-d constraint matrix subject
to a Gaussian perturbation of variance σ2, with probability at least 1 − δ over the random
perturbation, Renegar’s condition number C satisfies

C = Õ(
n2d3/2

σ2δ
)

A precise version of this statement is theorem 5.

As an example of what kind of conclusion we derive on the overall performance of algorithms,
we mention that a particular interior point method [FM 00] only requires O(

√
n+ d ln(C/ε))

iterations to come within ε of the optimal solution, and each iteration requires only an
approximate matrix inversion computable in O((n+ d)2.5) time. Thus the smoothed com-
plexity is O((n+d)3 ln(nd/(σε))) for this particular method to come within ε of the optimal
solution.

18

1.2.3 Algorithms using the Condition Number

Since Renegar’s initial papers [Ren 94, Ren 95a, Ren 95b] on condition numbers for linear
programs, there has been a large body of subsequent work. The running time of a num-
ber of algorithms for optimization has been analyzed in terms of their dependence on the
condition number [FN 01, FV 00]. The notion of condition number has even inspired new
algorithms for optimization [FE 00a, FE 00b]. Additionally, some variants of Renegar’s
original condition number have also been studied [FE 01].

In section 3.6, we describe a parameter known as the wiggle room of a linear program.
It is well-known within the machine learning community that the running time of the
perceptron algorithm may be bounded in terms of the wiggle room. In section 3.6, we show
that the wiggle room is exactly the primal condition number by another name, and hence the
running time of the perceptron algorithm for linear programming problems may similarly
be bounded in the smoothed complexity model. The observation that wiggle room exactly
corresponds to primal condition number has occurred to others3 but we do not think it is
widely known. The goal of section 3.6 is therefore both to publicize this connection, and to
illustrate the use of a condition number in analyzing the running time of an algorithm for
linear programming.

Our theorem on the smoothed complexity of the condition number implies a smoothed
complexity of the perceptron alorithm that is polynomial, something that is not true under
traditional worst-case analysis. The perceptron algorithm was only the second algorithm
(after the simplex algorithm) for which an exponential (or worse) running time was shown
to improve to a polynomial running time in the smoothed complexity model. Robert Fre-
und pointed out that numerous other simple algorithms, such as [FE 00b], have a similar
dependance on the condition number.

Part of the reason for the volume of work on condition number is that every linear
programming formulation requires a separate condition number analysis. This point is
made by [Ren 94, Ren 95a, Ren 95b, Ver 96, CP 01] in their work developing interior point
methods that have good dependence on the condition number. In addition to bounding
the time necessary to optimize, there has been work on quickly estimating the condition
number [FV 99], a well-known question for the condition numbers of other problems. Also,
the notion of condition number for linear programs has been extended to semi-definite
programs [FN 01], but we will not elaborate further on this topic.

1.2.4 Organization of Perturbation Results

In section 1.2.2, we define Renegar’s condition number for linear programming, a geo-
metric quantity of a linear program, and we state the exact results we will prove. In
section 3.2 and 3.3, we analyze the condition numbers of the primal and dual problems
respectively. In section 3.4, we combine these analyses to characterize the smoothed com-
plexity of Renegar’s condition number. In section 3.5, we discuss some possible future
avenues of investigation.

In section 3.6, we describe a classical machine learning algorithm, the perceptron algo-
rithm, and show how it has complexity polynomial in the primal condition number. This
result makes use of the well-known characterization of the running time of the perceptron
algorithm in terms of the wiggle room of the linear program. The perceptron algorithm is

3Rob Freund, personal communication.

19

one of many algorithms that have a smaller cost per iteration than an interior point method,
but whose running time depends polynomially on the condition number, rather than on the
log of the condition number.

In section 3.7 we discuss several alternative models of perturbation. In section 3.8 we
develop some technical results that the main body of the work uses as a black box.

20

Chapter 2

Outliers

The first question we address is that of detecting outliers. Since our definition of a γ2-outlier
involves all directions, it might not be obvious that this can be done in finite time. Even if
we were only interested in a finite set of directions, it might not be obivous that this can
eb done efficiently.

2.1 Algorithms for Outlier Removal

In order to detect outliers, we use a linear transformation. Let M = E[xxT] where x is a
sample drawn according to the probability distribution µ. If M is positive definite, there
exists a matrix A such that M = A2. Consider the transformed space z = A−1x. This
transformation preserves outliers: if z is a β-outlier in direction w in the transformed space,
the corresponding x = Az is a β-outlier in direction w′ = A−1w in the untransformed space,
and vice versa. The transformed distribution is in isotropic position [LKS 95], and we will
refer to the transformation as rounding. Such transformations have previously been used
in the design of algorithms to make geometric random walks more efficient [LKS 97]. If M
does not have full rank, it is still positive semi-definite, and we instead round µ in the span
ofM . For those familiar with the definitions of Mahalanobis distance or normalizing by the
covariance of the data set, this transformation shows the equivalence between our definition
of an outlier and these two other definitions.

For an isotropic distribution, any point x that is an outlier for some direction w is also
an outlier in the direction x. This follows from the fact that an isotropic distribution has
E[(wTx)2] = 1 for every w such that |w| = 1, and that the projection of the point x on to
a direction w is greatest when w = x/|x|. Thus, outlier identification is easy for isotropic
distributions.

The first algorithm has the following simple form: while there are β-outliers, remove
them; stop when there are no outliers. In the description below, µ is the given distribution
and β = γ2, where the exact value of β is specified in the proofs of theorems 1 and 2.

Algorithm 1 (Restriction to Ellipsoids):

1. Round µ. If there exists x such that |x| > γ, let S = {x : |x| ≤ γ}. Retain only points
in S.

2. Repeat until the condition is not met.

Algorithm 1 is identical to the outlier removal algorithm of [BFKV 99]. The following
variant of the above algorithm will be significantly easier to analyze. Whereas in the previous

21

algorithm we removed outliers in every direction in one step, in Algorithm 2 we only remove
outliers in one direction per step.

Algorithm 2 (Restriction to Slabs):

1. Round µ. If there exists a unit vector w such that max{(wTx)2} > γ2, let S = {x :
(wTx)2 ≤ γ2}. Retain only points in S.

2. Repeat until the condition is not met.

2.2 Outlier Removal over Arbitrary Support

We will prove the following theorem about outlier removal over a distribution with arbitrary
support before proceeding to prove theorem 1. We refer to conditions (I, II) in the hypothesis
of theorem 2 as the full-dimensional condition. In theorem 1 we will remove this condition,
replacing it only by a condition on the support of the distribution.

Theorem 2 (Outlier Removal over Arbitrary Support) Let µ be a probability distri-
bution on Rn satisfying

(I) ∀ unit vector ŵ,
∫
(ŵTx)2dµ ≤ R2

(II) ∀ unit vector ŵ, ∀S : µ(S) ≥ 1− ε̄,
∫
S(ŵ

Tx)2dµ ≥ r2

Then for every ε such that 0 < ε ≤ ε̄, there exists S and

β = O

(
n

ε
ln

R

r

)

such that
(i) µ(S) ≥ 1− ε
(ii) max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S] for all w ∈ Rn

To prove the theorem, we analyze the set S returned by either algorithm. This set S is
clearly β-outlier free. It remains to show that we do not discard too much of the distribution.
The main idea of the proof is to show that in every step the volume of an associated dual
ellipsoid increases. By bounding the total growth of the dual ellipsoid volume over the
course of the algorithm, we will deduce that no more than a certain fraction of the original
probability mass is thrown out before the algorithm terminates.

Towards this end, we will need some definitions. For a matrix M such that M = A2,
define the ellipsoids E(M) and W (M) as

E(M) = {x : |A−1x| ≤ 1} and W (M) = {x : |Ax| ≤ 1}.

We will refer to E(M) and W (M) as the primal inertial ellipsoid and the dual ellipsoid
respectively. For any subset S of Rn, we denote by MS the matrix given by

MS =
∑
x∈S

µ(x)xxT = E[xxT : x ∈ S] Pr[x ∈ S]

In other words, MS is the M obtained after restricting µ to S (zeroing out points outside
of S, not renormalizing the distribution). We denote this restricted probability distribution

22

directly by µS . Throughout this chapter, µS will denote a restriction of µ to the subset of
space S, never a new and unrelated distribution. The useful property attained by rounding
with respect to µS (the restriction of the original distribution to S) is that

E[(wTx)2 : x ∈ S] Pr[x ∈ S] = 1

for every unit vector w, where the expectation and probability are with respect to x drawn
from µ. We will actually prove theorem 2 with E[(wTx)2 : x ∈ S] Pr[x ∈ S] in place of
E[(wTx)2]. Note that this is a stronger statement than the original theorem. Let x ∈ µS
denote x ∈ S : µ(x) > 0, and let span(µS) denote the span of {x ∈ µS}.

We will also need the following elementary facts about ellipsoids: the volume of a full-
dimensional ellipsoid is given by the product of the axis lengths times the volume of the unit
ball, which we will denote by f(n). The ellipsoid {x : |A−1x| ≤ 1} has axes given by the
singular vectors of A. The axis lengths ofW (M) and E(M) are given by the singular values
of A−1 and A, and so they are reciprocals. It follows that V ol(W (M))V ol(E(M)) = (f(n))2,
a function solely of the dimension.

Lemma 1 relates the dual volume growth to the loss of probability mass, and lemma 2
upper bounds the total dual volume growth.

Lemma 1 (Restriction to a Slab) Let γ be fixed, and let µ be a full-dimensional
isotropic distribution. Suppose ∃w, |w| = 1 such that

max{(wTx)2} > γ2E[(wTx)2]

Let S = {x : (wTx)2 ≤ γ2} and p = Pr[x /∈ S]. Then

V ol(W (MS)) ≥ epγ
2/2V ol(W (M))

Proof: Let a2 = E[(wTx)2 : x ∈ S] Pr[x ∈ S]. Starting from the identity

E[(wTx)2] = Ex∈S [(wTx)2] Pr[x ∈ S] +Ex/∈S [(wTx)2] Pr[x /∈ S]

and using that (wTx)2 ≥ γ2 for all x not in S, we get that 1 ≥ a2 + γ2p, which implies

a2 ≤ 1− γ2p ≤ e−γ
2p

We now construct a vector w′ of length 1/a belonging to the dual ellipsoid of µS . Letting
w′ = w/a suffices since w is a unit vector by assumption and

a2 = E[(wTx)2 : x ∈ S] Pr[x ∈ S] = wTMSw

⇒ 1 = w′TMSw′ ⇒ w′ ∈W (MS)

We also show that every v ∈W (M) also belongs to W (MS). We have

MS =M −
∑
x/∈S

µ(x)xxT .

Hence,
vTMSv = vTMv −

∑
x/∈S

µ(x)vTxxT v

23

= vTMv −
∑
x/∈S

µ(x)(vTx)2 ≤ vTMv ≤ 1

implying that v ∈ W (MS) (the last step is from the assumption that v ∈ W (M)). The
length of a point on the boundary of an ellipsoid lower bounds the length of the longest
axis. Since at least one axis of the dual ellipsoid has length 1/a, and all the other axes have
length at least 1, V ol(W (MS)) ≥ (1/a)f(n) while V ol(W (M)) = f(n), implying the dual
volume grows by at least a factor of eγ

2p/2. This concludes the proof of lemma 1.
Note that if we desire to apply the lemma to analyze the result of a later iteration of

Algorithm 2, where µT goes to µT∩S , we simply replace the starting identity by

Ex∈T [(wTx)2] Pr[x ∈ T] = Ex∈T∩S [(wTx)2] Pr[x ∈ T ∩ S] +Ex∈T\S [(wTx)2] Pr[x ∈ T \ S]

The analysis and conclusion remain the same.

Lemma 2 (Dual Volume Growth) Let µ be a distribution satisfying

(I) ∀ unit vector ŵ,
∫
(ŵTx)2dµ ≤ R2

(II) ∀ unit vector ŵ, ∀S : µ(S) ≥ 1− ε̄,
∫
S(ŵ

Tx)2dµ ≥ r2

For any S∗, let µS∗ be the restriction of µ to S∗. Assume µ(S∗) ≥ 1− ε̄. Then

V ol(W (M)) ≥ f(n)
Rn

V ol(W (MS∗)) ≤ f(n)
rn

Proof: First we lower bound the initial dual volume, V ol(W (M)). Consider any vector v
of length at most 1/R. We have

vTMv = E[(vTx)2] =
∫
(vTx)2dµ ≤ (v2R2) ≤ 1

so v belongs to the dual ellipsoid. Thus the dual ellipsoid initially has volume at least
f(n)/Rn.

Next we upper bound V ol(W (MS∗)). Consider any vector v of length more than 1/r.
Then

vTMS∗v =
∫
S∗
(vTx)2dµ ≥ (v2r2) > 1

Thus v is not in W (MS∗), and thus the ultimate volume of the dual ellipsoid is no more
than the volume of the sphere of radius 1/r, yielding the claimed upper bound.

In the proof of theorem 2 below, µS∗ will be the final distribution resulting from appli-
cation of either algorithm. Using lemmas 1 and 2, we prove that Algorithm 2 terminates
with S = S∗ satisfying theorem 2.
Proof of Theorem 2: Let β = 4nε (ln

R
r +1). Suppose that the algorithm terminates with

subset S∗ after having thrown out no more than ε′ of the original probability mass. Then
we have that for every w,

max{(wTx)2 : x ∈ S∗} ≤ γ2E[(wTx)2 : x ∈ S∗] Pr[x ∈ S∗]

24

We remind the reader again that normalizing µS∗ so that it is a probability distribution
on points from µ, rather than with points outside of S∗ replaced by zeros, increases the
right-hand side of this inequality by the factor 1/µ(S∗), but does not increase the left-hand
side. Thus the inequality will still be true even if we normalize µS∗ . We thus achieve a
β-outlier free subset with

β = γ2 = 4
n

ε
(ln

R

r
+ 1)

It now remains to show that ε′ ≤ ε, i.e. that we do not throw out more of the probability
mass than claimed. Suppose that during the ith iteration of the algorithm through step 1, a
pi fraction of the original points are thrown out. Then the total amount thrown out is

∑
pi.

By lemma 1, the total amount of dual volume increase is
∏
i e
piγ

2/2 = e
γ2

2

∑
pi . Comparing

this to our bound on the total increase in the dual volume from lemma 2 yields

e
γ2

2

∑
pi ≤ (R

r
)n = en ln R

r

⇒ 1
2
γ2ε′ =

1
2
(4
n

ε
ln

R

r
)ε′ ≤ n ln

R

r

⇒ ε′ ≤ ε/2

The one remaining catch is showing that ε′ ≤ ε̄, since we relied on this in applying
lemma 2 above. By slight overloading of notation, we let ε′ denote the cumulative probability
mass that has been removed at any point during the algorithm. Suppose for the purpose
of establishing a contradiction that in iteration j, ε′ ≤ ε̄, but then in iteration j + 1, ε′ > ε̄.
Then on step j, we can apply lemma 2, and from the analysis above, ε′ ≤ ε/2 ≤ ε̄/2.
However, in any single iteration, the maximum probability mass the algorithm might throw
out is 1/γ2, as can be seen from the proof of lemma 1:

a2 ≤ 1− γ2p ⇒ 0 ≤ 1− γ2p ⇒ p ≤ 1/γ2

Thus in one step ε′ increase by at most ε/[4n(ln(R/r) + 1)] ≤ ε̄
2 , and so on step j + 1, we

still have ε′ ≤ ε̄. This concludes the proof of theorem 2.
We now give an alternate proof of theorem 2 using the construction given by Algorithm

1. We begin by proving an analogue to lemma 1.

Lemma 3 (Restriction to an Ellipsoid) Let γ be fixed, and let µ be a full-dimensional
isotropic distribution. Let S = {x : (xTx) ≤ γ2} and p = Pr[x /∈ S]. Then

V ol(W (MS)) ≥ epγ
2/2V ol(W (M))

Proof: First we establish the tradeoff for a radially symmetric distribution, and then we
show that a radially symmetric distribution is the worst case for the tradeoff we want.

Let µ′ be a radially symmetric distribution, and define M ′, S, and p as above. We
then calculate the increase in V ol(W (M ′)). Let a2 = Eµ′ [(wTx)2 : x ∈ S] Pr[x ∈ S] for
any w, |w| = 1. From the center of an n-dimensional sphere of radius γ, the projection
of the sphere on to any direction is sharply concentrated around γ/

√
n, and the squared

expectation is exactly γ2/n. Using the identity

E[(wTx)2] = Ex/∈S [(wTx)2] Pr[x /∈ S] +Ex∈S [(wTx)2] Pr[x ∈ S]

25

as in the proof of lemma 1, but now for any w, we deduce 1 ≥ a2 + γ2p/n, and thus

an ≤
(
1− γ2p

n

)n/2
≤ e−γ

2p/2

As in the proof of lemma 1, we observe that W (M ′
S) includes a vector of length 1/a in the

direction of w. Since this is now true for every w, the dual ellipsoid volume increases by at
least a factor of (1/a)n. This shows that in the case of a radially symmetric distribution,

V ol(W (MS)) ≥ epγ
2/2V ol(W (M))

Now we show that a radially symmetric distribution is the worst case for the tradeoff
we want. Suppose there were some isotropic, full-dimensional distribution µ for which the
statement of the lemma was not true. We construct a new isotropic, full-dimensional and
radially symmetric distribution µ′ for which the statement is also false.

We begin by noting that every point thrown out from µ is also thrown out from any
rotation of µ – this just follows from the fact that µ is isotropic. Let µ′ be the expectation
of µ under a random rotation. That is, µ′ is a radially symmetric distribution such that the
probability of choosing x from µ′ at distance less than r from the origin is exactly the same
as the probability of choosing x from µ at distance less than r from the origin, for every r.
Let M ′ correspond to µ′.

Consider an axis direction wi of E(MS), |wi| = 1. We have a2
i = E[(wTi x)

2 : x ∈
S] Pr[x ∈ S]. For E(M ′

S), denote the axis length for any axis (also just the radius of
E(M ′

S)) by ā. We find from the construction of µ′ that

ā2 =
1
n

n∑
i=1

E[(wTi x)
2 : x ∈ S] Pr[x ∈ S] =

1
n

n∑
i=1

a2
i

One way to visualize this equality is to take µ and simply consider µ̃ achieved by averaging
over rotations of the axes of µ onto the other axes of µ; since this is a discrete set of
rotations, it is clear that the squared axis lengths of µ̃ are just the arithmetic averages of
the squared axis lengths of µ. Then we can make µ̃ into µ′ by taking a continuous set of
rotations, without affecting the axis lengths from µ̃.

We now consider the volume of E(M ′
S). We have

V ol(E(M ′
S)) = f(n)

n∏
i=1

ā = f(n)



√√√√ 1

n

n∑
i=1

a2
i



n

≥ f(n)
n∏
i=1

ai = V ol(E(MS)

using the arithmetic mean-geometric mean inequality. This implies that V ol(W (MS)) ≥
V ol(W (M ′

S)). This concludes the proof of lemma 3.

Finally, we prove that Algorithm 1 terminates with S satisfying theorem 2.
Proof of Theorem 2: As in the proof of theorem 2 using Algorithm 2, let β = 4nε (ln

R
r +1).

Lemma 2 still holds. The rate of increase in the dual volume as we throw out probability
mass (lemma 3) is the same as before (lemma 1). The only thing we need to address is
what we called “the one remaining catch” in the proof using Algorithm 2. Our bound on
the amount of probability mass that can be thrown out in a single step is no longer 1/γ2,

26

but is now n/γ2. However, n/γ2 = ε/[4(ln(R/r) + 1)] ≤ ε̄
2 just as before. This concludes

the analysis of Algorithm 1.
The following connection shows that the success of either algorithm implies that they

both succeed. If our criterion for a point x to be a β-outlier in a direction w were instead
that

(wTx)2 > βE[(wTx)2 : x ∈ P] Pr[x ∈ P]

then Algorithms 1 and 2 both throw out the exact same points, and so must yield the same
bound on β as a function of ε. To see this, note that any β-outlier under this definition
remains a β-outlier as further points are removed, and so will have to be removed itself
eventually. Also, no point is ever removed unless it currently is a β-outlier. Thus the
two algorithms throw out exactly the same set of points in the end under this alternative
definition of an outlier. In section 2.6, we develop this observation into an approximation
algorithm for the problem of outlier removal using the standard definition of a β-outlier
(not this alternative definition).

We pause to stress what we have gained by allowing some points of the distribution to
be removed. If we force ε = 0, then even under the hypothesis of theorem 2, β may be
unbounded. Even a radially symmetric distribution satisfying the hypothesis with support
in {BR \Br√n}, where BR denotes the ball of radius R, might have β as large as

β =
R2

r2

By allowing ε > 0, we have achieved

β = 4
n

ε
(ln

R

r
+ 1)

2.3 Outlier Removal over Discrete Support

While theorem 2 might suffice for many applications, it is indeed possible that during outlier
removal on an arbitrary set, the full-dimensional condition might be violated (indeed, the
dimensionality of the remaining set might decrease). In this section we prove the following
theorem, which shows that for distributions over integers, the full-dimensional condition is
entirely unnecessary.

Theorem 1 (Outlier Removal over Discrete Support) Let µ be a probability distri-
bution on Znb . Then for every ε > 0, there exists S and

β = O
(n
ε
(b+ log

n

ε
)
)

such that
(i) µ(S) ≥ 1− ε
(ii) max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S] for all w ∈ Rn

The proof of this theorem presents two difficulties that were not present in the proof
of theorem 2. First, µ might initially lie entirely on a lower-dimensional subspace, or µ
might lie on a lower-dimensional subspace after the removal of a few points. Secondly, even
if the distribution does not lie on a lower-dimensional subspace, we do not have the same
lower bound on the smallest singular value of the distribution (singular value of the matrix

27

M associated with µ). While we insisted in the hypothesis of theorem 2 that the smallest
singular value must be at least 1/r, which will be roughly equivalent to 2−b in the discrete
case, it may be that the smallest singular value is actually 2−nb, as the following example
makes clear.

Example 1 Let B = 2b, and let each row of the matrix below represent a point in space.
Denote the first n− 1 rows by {vi}n−1

i=1 and denote the last row by p.

B −1

B −1
B −1

. . .
1




This set of points is clearly full-dimensional, and in most directions the singular values
are on the order of B. However, in the direction w = [B−n, B−n+1, . . . , B−1, 1], we find
that (wT vi)2 = 0 while (wT p)2 = B−n = 2−nb. Since w > 1, the singular value is actually
slightly less than 2−nb.

Example 1 shows that even disregarding issues of the distribution not being full-
dimensional, we cannot use theorem 2 to treat the distribution with integer support unless we
are willing to settle for β = Õ(n

2b
ε). In extending our techniques to prove theorem 1, we will

show that although one singular value may be small, they are not all small simultaneously
in an appropriate amortized sense.

The first thing we shall define is a potential function that generalizes the dual ellipsoid
volume we used in the proof of theorem 2. This potential function will account for the
distribution µ being concentrated on a lower dimensional subspace, or even the possibility
that µ is simply quite close to a lower dimensional distribution. We begin by defining the α-
core of a distribution to be that subset of the distribution which lies on a subspace spanned
by every large subset of the distribution. It will help to define the indicator function of E
to be

χE =

{
1 if E is true
0 if E is false

where E is a logical statement. The α-core is then given by

Definition 2 (α-core) Define the α-core of µS to be µT , where T ⊂ S is chosen to be
maximum such that

∀w ∈ span(µT) such that w �= 0,
∑
x∈µT

χ{wT x 	=0}µ(x) ≥ α

We now establish some characteristics of the α-core, including that the α-core is well-
defined.

Lemma 4 (Characterization of α-core)

(i) For any µT ,

∀w ∈ span(µT) such that w �= 0,
∑
x∈µT

χ{wT x 	=0}µ(x) ≥ α (a)

28

if and only if

∀w, wTx �= 0 for some x ∈ µT ⇒
∑
x∈µT

χ{wT x 	=0}µ(x) ≥ α (b)

(ii) Q ⊂ S =⇒ α-core(µQ) ⊂ α-core(µS)

(iii) Q ⊂ S =⇒ α-core(µQ) = α-core(µQ ∩ α-core(µS))

(iv) Suppose that µT = α-core(µS), and that dim(span(µS)) = k, dim(span(µT)) = k′.
Then µ(S \ T) ≤ (k − k′)α

Proof: We first establish (i). Let µT be arbitrary. Assume (b) does not hold, i.e., there
exists x ∈ µT and a direction w such that wTx �= 0 and∑x∈µT

χ{wT x 	=0}µ(x) < α. Writing

w = w1 + w2, w1 ∈ span(µT), w2 ⊥ span(µT)

we find wTx = wT1 x �= 0, while
∑
x∈µT

χ{w′T x 	=0}µ(x) =
∑
x∈µT

χ{wT
1 x 	=0}µ(x) < α. Since

w1 ∈ span(µT), (a) does not hold.
Now suppose that (b) does hold. If w ∈ span(µT), then wTx �= 0 for some x ∈ µT , and

hence (b) implies that
∑
x∈µT

χ{wT x 	=0}µ(x) ≥ α, so (a) holds too.
To show (ii), we give an algorithm for constructing α-core(µS):

1. If there exists x ∈ µS and a direction w such that wTx �= 0 but
∑
x∈µS

χ{wT x 	=0}µ(x) <
α, remove x from µS .

2. Repeat until there does not exists such an x.

To argue the correctness of this algorithm, it suffices to show that if x meets the cri-
terion of step 1, then x cannot be in any µR, R ⊂ S such that ∀w,wTx �= 0 =⇒∑
x∈µR

χ{wT x 	=0}µ(x) < α. But this is obvious, since the w associated with x in step 1

satisfies wTx �= 0 and yet
∑
x∈µR

χ{wT x 	=0}µ(x) ≤ ∑x∈µS
χ{wT x 	=0}µ(x) < α. Therefore

any x identified in step 1 cannot be in α-core(µS). Since the algorithm stops when it has
arrived at µT satisfying (b), and no point has been removed that could be in α-core(µS),
µT = α-core(µS). This establishes that the α-core is well-defined.

Now consider the order in which points are identified in step 1 when the algorithm is
applied to µS . Considering points in the same order (and omitting points that are in µS
but not in µQ), the algorithm run on µQ would always remove the points as well, simply
because

∑
x∈µQ′ χ

{wT x 	=0}µ(x) ≤∑x∈µS′ χ
{wT x 	=0}µ(x), where Q′ and S′ are Q and S minus

the points that the algorithm has removed prior to the iteration under consideration.
We prove (iii) using (ii).

α-core(µQ) ⊂ α-core(µS)⇒
µQ ∩ α-core(µQ) ⊂ µQ ∩ α-core(µS)⇒

α-core(µQ ∩ α-core(µQ)) ⊂ α-core(µQ ∩ α-core(µS))

We note that α-core(µQ ∩ α-core(µQ)) = α-core(µQ). Now

µQ ∩ α-core(µS) ⊂ µQ ⇒
α-core(µQ ∩ α-core(µS)) ⊂ α-core(µQ)

29

Combining these yields α-core(µQ) = α-core(µQ ∩ α-core(µS)).
To see (iv), construct µT from µS in the following greedy manner. If dim(span(µT)) <

dim(span(µS)), then

∃w ∈ span(µS) such that
∑
x∈µS

χ{wT x 	=0}µ(x) < α

If w were not ⊥ to span(µT), we could write

w = w1 + w2, w1 ⊥ span(µT), w2 ∈ span(µT)

and then argue
∑
x∈µS

χ{wT x 	=0}µ(x) ≥∑x∈µT
χ{wT x 	=0}µ(x) =

∑
x∈µT

χ{wT
2 x 	=0}µ(x) ≥ α.

Hence w ⊥ span(µT). Remove every point x ∈ µS such that wTx �= 0 (a less than α
fraction of the total probability mass), and note that this causes dim(span(µS)) to drop by
at least 1. Therefore this construction can be iterated at most (k − k′) times, and hence
µ(S \ T) ≤ (k − k′)α.

We can now define the potential φ of a distribution (or a subset of a distribution).

Definition 3 (Potential Function: φ) Let µT be the α-core of µS. Let φ(µS) be
V ol(W (MT)), the volume of the dual ellipsoid of µT . If µT is not full dimensional, but
instead lies in a space of dimension k, let φ(µS) be V olk(W (MT)), the k-dimensional volume
(within the span of µT) of the dual ellipsoid of µT .

We now prove upper and lower bounds on φ(µS), analogous to lemma 2, for the case
that the α-core of µS is full-dimensional. Although a tighter version of this lemma may be
possible, the analysis here is sufficient to show the asymptotic result of theorem 1.

Lemma 5 (Bounds on φ) Denote the α-core of µS by µT and suppose that µT is full-
dimensional (and hence µT = µS). Then

φ(µS) ≥ (2b
√
n)−nf(n)

φ(µS) ≤ (n/α)nf(n)

Proof: We lower bound φ by showing that for any vector v satisfying |v| ≤ 2−b√
n
, v is in

the dual ellipsoid. Using that no element x of µ has length greater than
√
n2b, we find that

vTMSv =
∑
x∈µS

(xT v)2µ(x) ≤
∑
x∈µS

x2v2µ(x) ≤ 1

The claimed lower bound now follows from the fact that W (MS) contains a ball of radius
2−b√
n
.
To upper bound φ(µS), we will use that µT is full-dimensional. Because the volume of

an ellipse is equal to the product of the axis lengths times a factor that depends only on the
dimension, we have that φ(µS) = f(n)/Det(MS) where MS =

∑
x∈µS

xxTµ(x). We now
show that we can decompose MS into a set of simpler components plus some extra points,

MS =
∑
i

λiMi +
∑
y

yyT

30

where each Mi is a positive definite nxn matrix of integers and
∑

λi ≥ α/n, λi ≥ 0.
To see this decomposition, begin by picking any point x1 ∈ µS . Now pick any point

x2 ∈ µS such that x2 /∈ span(x1). Now pick any point x3 /∈ span(x1, x2). Continuing, we
can always make such a choice by considering any direction w perpendicular to the span of
the previous points — any point with non-zero inner product with this w, guaranteed to
exist by the definition of α-core, lies off the span of the previous points. This first set of
points {xj}nj=1 yields M1 =

∑
j xjx

T
j with λ1 = minj µ(xj). To form M2, we must restrict

ourselves to picking points from {µS \λ1M1} (using slight overloading of notation). By the
definition of α-core, as long as

∑
λi < α/n, we will always be able to form a newMi because

we have subtracted off less than an α fraction of the probability mass from the distribution
thus far. The process can be seen to terminate in a finite number of steps because the
support of µS is initially a finite number of points, and at every step the cardinality of the
support decreases by at least one. The {y} which we referred to as “extra points” above are
simply the points remaining in µS when this operation, having formed a sufficient number
of Mi, comes to an end.

Note that each matrixMi satisifies Det(Mi) ≥ 1 because it is the sum of the products of
many integer terms and it is positive (becauseMi is positive definite). We now show that we
may ignore the y terms in establishing a lower bound for Det(MS). Another consequence of
Mi being positive definite is that Mi = AiA

T
i for some Ai. Since the determinant of MS is

the product of the eigenvalues, and each eigenvalue ej is equal to
∑
i λi(A

T
i wj)

2+
∑
y(y
Twj)2

for some unit vector wj , Det(
∑
i λiAiA

T
i) ≤ Det(

∑
i λiAiA

T
i +
∑

yyT).
We have from fact 2 in section 2.10 (and since the geometric mean is at least the min)

that for
∑

λ′i = 1,
Det(
∑
i

λ′iMi) ≥ min
i
{Det(Mi)}

The last step is to write Det(ξM) = ξnDet(M), which implies Det(MS) ≥ (α/n)n. This
yields the claimed upper bound on φ(µS).

Note that lemma 5 implies that the log of the ratios between the upper and lower bounds
on φ is at most n(b+1.5(log nα)). (The relevant setting of α for the proof of theorem 1 will be
α = ε/(3n).) This compares favorably with the corresponding ratio in the continuous case,
n ln Rr , and suggests that we have not introduced much slack while extending our techniques
to amortize over the singular values.

We now address the issue of dimension dropping. We refer to non-monotone growth in
the title of lemma 6 because now φ may drop when we remove some of the distribution.
To see this, consider example 1 again: φ is initially about f(n), but after removing the
point p, φ becomes roughly 2−b(n−1)f(n). In the proof of theorem 2, we bounded the
drop in probability mass by bounding the increase in the volume of the dual ellipsoid.
Because φ may decrease greatly during the course of the algorithm (when the α-core drops
in dimension), a bound on φ’s final value is no longer enough to bound the drop in probability
mass. Happily, we can still bound the growth of φ in the following sense:

Lemma 6 (Non-Monotone Growth of φ) Over the course of either algorithm on dis-
tribution µ, let (∆φ)i denote the relative increase in φ while α-core(µ) spans a subspace of
dimension i (or 1 if α-core(µ) is never concentrated on a subspace of dimension i). Then∏

i

(∆φ)i ≤ 2n(b+3 log n
α

+1)

31

Proof: Suppose that initially the α-core of µ is full-dimensional, and that
∏
i(∆φ)i = V .

Under a simplifying assumption, we construct a distribution µ′ such that the α-core of µ′ is
full-dimensional and φ(µ′)/φ(µ) ≥ V . (If the result of applying the oulier removal algorithm
to µ is µS that has full-dimensional α-core, then µ′ = µS and there is nothing to do.) By
lemma 5, φ(µ′) and φ(µ) cannot differ by a factor of more than 2n(b+1.5 log n

α
), and thus this

suffices to prove the bound on V . We then remove the simplifying assumption. We defer
the issue that the α-core of µ might not initially be full-dimensional to the very end of the
proof.

Suppose that the algorithm goes from µR of dimension (i + 1) to µS of dimension i,
and then runs for a while to produce µT (still of dimension i). The simplifying assumption
we mentioned above is that the dimension of the α-core has only fallen by 1 on this step.
For ease of exposition, assume that each distribution is equal to its α-core. This is without
loss of generality because φ is defined in terms of the α-core, and so the points outside the
α-core are irrelevant for this lemma. We will construct µ′

S′ and µ′
T ′ of dimension (i + 1)

such that φ(µ′
S′) ≥ φ(µR) and

φ(µ′
T ′)

φ(µT) =
φ(µ′

S′)
φ(µS) . Then we will have

φ(µ′
T ′) =

φ(µT)
φ(µS)

φ(µ′
S′) ≥ (∆φ)iφ(µR)

Applying this construction iteratively over all the dimensions yields µ′ of dimension n
satisfying φ(µ′)/φ(µ) ≥ V .

Let us now construct µ′
S′ and µ

′
T ′ . Define pj = µ(xj) for all xj ∈ µR\S and let P =

∑
j pj .

Then
MR =MS +

∑
j

pjxjx
T
j =
∑
i

pj
P
(MS + Pxjx

T
j)

Define Xj to be (MS + Pxjx
T
j). By fact 2 (section 2.10),

Det(
∑

λjXj) ≥ min{Det(Xj)},
∑

λj = 1

there exists j such that Det(Xj) ≤ Det(MR). Denote this particular xj by x, and let

µ′
S′ = {µS + x with weight α}

µ′
T ′ = {µT + x with weight α}

Note that P ≥ α, and so Det(M ′
S′) ≤ Det(Xj). Thus φ(µ′

S′) ≥ φ(µR).

We now show
φ(µ′

T ′)
φ(µT) =

φ(µ′
S′)

φ(µS) . Rotate the distributions so that span(µS) and span(µT)
are equal to the first i coordinate axes, and x lies in the span of the first i + 1 coordinate
axes. Denote the vector formed from the first i coordinates of x by x[1 . . . i], and the (i+1)st

coordinate of x by x[i+ 1]. Then the distance of x to span(µS) is just x[i+ 1], and this is
also the distance of x to span(µT). We have φ(µT) = f(i)/Det(MT), while

φ(µ′
T ′) = f(i+ 1)/Det

([
MT 0
0 0

]
+ α2

[
x[1 . . . i]x[1 . . . i]T x[i+ 1]x[1 . . . i]
x[i+ 1]x[1 . . . i]T x[i+ 1]2

])

where the upper left matrix block (MT + α2x[1 . . . i]x[1 . . . i]T) is ixi. For any matrix A,
subtracting a scalar multiple of some row of A from another row of A does not change the
determinant of A. To calculate φ(µ′

T ′), we subtract x[l]/x[i + 1] times the last row of the

32

matrix from the lth row for every l ≤ i. This yields

Det

([
MT 0
0 0

]
+ α2

[
0 0

x[i+ 1]x[1 . . . i]T x[i+ 1]2

])
= Det(MT)α2x[i+ 1]2

Therefore
φ(µ′

T ′)
φ(µT) = (αx[i+1])

−2 f(i+1)
f(i) . An identical calculation yields an identical result

for
φ(µ′

S′)
φ(µS) . This shows that

φ(µ′
T ′)

φ(µT) =
φ(µ′

S′)
φ(µS) .

We now remove the simplifying assumption and extend this construction to the case
that at some step the α-core falls in dimension by more than 1. If µR and µS differ by k
dimensions, we construct µ′

S′ by adjoining k points from µR\S , each with weight α/k. We
now show how to find these points. Since µR is an α-core, and span(µS) is a subspace of k
dimensions less, we can use the construction of lemma 5 to write

MR =MS +
∑
i

λiAiA
T
i +
∑

yyT ,
∑
i

λi = Λ ≥ α

k

where each Ai is a set of k points such that span({µS +Ai}) = span(µR). As above,

Det(MR) ≥ Det(MS+
∑
i

λiAiA
T
i) ≥ min

i
{Det(MS+ΛAiATi)} ≥ min

i
{Det(MS+

α

k
AiA

T
i)}

Let A denote the Ai realizing this minimum and let

µ′
S′ = {µS + A with weight

α

k
}

µ′
T ′ = {µT + A with weight

α

k
}

We have φ(µ′
S′) ≥ φ(µR) by construction. It remains to show

φ(µ′
T ′)

φ(µT) =
φ(µ′

S′)
φ(µS) . We do this by

by showing that the previous calculation (giving this fact under the simplifying assumption)
can be repeated k times. Let µ′(l)

S′ denote {µS + first l points of A with weight αk } and
define µ′(l)

T ′ similarly. Then the previous calculation yields

φ(µ′(1)
T ′)

φ(µT)
=

φ(µ′(1)
S′)

φ(µS)
,

φ(µ′(2)
T ′)

φ(µ′(1)
T ′)

=
φ(µ′(2)

S′)

φ(µ′(1)
S′)

, . . . ⇒ φ(µ′(k)
T ′)

φ(µ′
T ′)

=
φ(µ′(k)

S′)
φ(µ′

S′)

This concludes the construction of µ′ which is full-dimensional and at least an α/n-core.
We now turn to the case that µ is initially only k dimensional, where k < n. In this case,

we adjoin any (n − k) points, each with weight α, to form µ̄, where µ̄ is full-dimensional.
Then µ̄ may not be a probability distribution, but it has total weight at most 1 + nα, and
so

φ(µ̄) ≥ (2b√n√1 + nα)−nf(n)

by the same construction as in the lower bound of lemma 5. The iterative construction
above (without the simplifying assumption) yields µ̄′ such that φ(µ̄′) ≤ (n2/α)nf(n), and
so

φ(µ̄′)/φ(µ̄) ≤ (n
2

α
2b
√
n+ n2α)n ≤ (2n32b/α)n ≤ 2n(b+3 log n

α
+1)

This concludes the proof of the lemma.

33

We now prove that Algorithm 2 applied to a distribution µ over the b-bit integers yields
S satifying theorem 1.
Proof of Theorem 1: Let α = ε/(3n) and let β = γ2 = 6nε (b + 4 log

n
ε + 3). The only

time that the drop in probability mass due to action by the algorithm does not lead to an
increase in φ is when either the algorithm causes the dimension of the α-core to drop, or
the algorithm removes probability mass that lies outside the α-core.

We first consider the fraction of the distribution that is not part of the α-core. Initially,
dim(span(µ)) is at most n. Suppose dim(span(α-core(µ))) = k. Then by lemma 4:(iv), at
most an α(n− k) fraction of µ lies outside of the α-core of µ. Points only leave the α-core
when they are removed by the algorithm, or when the algorithm takes µS to µS′ in one step
and

dim(α-core(µS)) = k1, dim(α-core(µS′)) = k2, k2 < k1

In the latter case, the probability mass lost from the α-core (and not removed by the
algorithm) is given by

{µS′ ∩ α-core(µS)} \ {α-core(µS′)}
Since S′ ⊂ S, by lemma 4:(iii), this is the same as

{µS′ ∩ α-core(µS)} \ {α-core(µS′ ∩ α-core(µS))}

and by lemma 4:(iv) this is no more than α(k1−k2). Since the cumulative drop in dimension
of the α-core is no more than n dimensions, no more than an αn fraction of the distribution
ever leaves the α-core (without being removed by the algorithm) over the course of the
algorithm.

We now bound the amount of the distribution removed by the algorithm on steps in
which the α-core drops in dimension. In the proof of theorem 2, we showed that in any
single step, Algorithm 2 throws out no more than a 1/γ2 fraction of the distribution. Since
there are no more than n steps where the α-core drops in dimension, we throw out no more
than an n/γ2 fraction in this way. This yields that at most an nα + n/γ2 ≤ 2ε/3 fraction
of the probability mass that we throw away does not contribute to increasing φ.

We now proceed exactly as we did in the proof of theorem 2 for Algorithm 2. Every
time we remove pi of the probability mass from the α-core and the α-core does not drop in
dimension, we have from lemma 1 that φ must increase by epiγ

2/2. If we throw out an ε′

fraction of µ, at most a 2ε/3 fraction does not contribute to φ increasing, so by application
of lemma 1 ∏

(∆φ)i ≥ e
γ2

2
(ε′− 2ε

3
)

Lemma 6 then yields

2n(b+4 log n
ε
+3) ≥ e

γ2

2
(ε′− 2ε

3
)

⇒ n(b+ 4 log
n

ε
+ 3) ≥ γ2

2
(ε′ − 2ε

3
)

⇒ 1 ≥ 3
ε
(ε′ − 2ε

3
)⇒ ε′ ≤ ε

This concludes the proof of theorem 1 using Algorithm 2.
We now prove theorem 1 using Algorithm 1. As we noted previously, this may be

obtained as a corollary of the success of Algorithm 2, but a direct proof raises an additional
issue that we explore below. The resolution of this issue leads to a bound on β with smaller

34

leading constant.
Proof of Theorem 1: Let α = ε/(3n) and let β = γ2 = 3nε (b + 4 log

n
ε + 3). The only

new issue is bounding the amount of probability mass removed by the algorithm on steps in
which the α-core drops in dimension. We might remove up to an n/γ2 fraction in a single
step, but our asymptotic bound would not stand up if we could remove up to an n2/γ2

fraction of the probability mass over the course of the algorithm.
Suppose the α-core falls by k dimensions in one step of the algorithm. Rather than

considering all the points outside S = {x : |x| ≤ γ after rounding} as being removed at once,
imagine instead that the probability mass on every point is uniformly decreased. Then, φ
increases continuously except for at most k discrete time steps, when the dimension of the
α-core drops. Apart from the steps on which the α-core drops, φ increases as a function
of the probability mass removed exactly as implied by lemma 3. Every time the α-core
drops by i dimensions, at most an iα amount of probability mass leaves the α-core (by
lemma 4:(iv)). Therefore at most a kα amount of probability mass is removed without an
increase in φ. In this thought experiment, no probability mass in the α-core is removed by
the algorithm without an increase in φ. Thus at most an nα = ε/3 amount of probability
mass is removed without an increase in φ. We apply lemma 3 and lemma 6 as before to
obtain

∏
(∆φ)i ≥ e

γ2

2
(ε′− ε

3
)

⇒ 2n(b+4 log n
ε
+3) ≥ e

γ2

2
(ε′− ε

3
)

⇒ n(b+ 4 log
n

ε
+ 3) ≥ γ2

2
(ε′ − ε

3
)

⇒ 1 ≥ 3
2ε
(ε′ − ε

3
)⇒ ε′ ≤ ε

This concludes the proof of theorem 1 using Algorithm 1.

2.4 Efficiency

In this section we describe polynomial time versions of both algorithms. The computational
model is to allow multiplications and additions in unit time.

2.4.1 Point sets

Suppose the distribution µ is specified explicitly as a set of m points with weights corre-
sponding to probabilities. Then we can achieve exactly the stated value of β with either
algorithm deterministically. The running time for either algorithm is given by the time to
compute M (O(mn2)), the time to round the distribution (O(n3 +mn2)), the time to find
an outlier (O(mn)), and the need to repeat the whole process up to m times. This yields a
time bound of O(m2n2 +mn3).

In the above discussion we made the worst case assumption that only one data point
was thrown out in each iteration of rounding and looking for outliers. In the case that a
single data point is throw out, rounding the distribution can be done more efficiently. If
the distribution is initially isotropic, and v of probability p is removed, then M ′ = I−pvvT

35

gives the new inertial ellipsoid. We can factor M ′−1 symbolically as

M ′−1 = BBT =

(
I −
(
1− 1√

1− vT vp

)
vvT

vT v

)2

where we have chosen B to be symmetric. To verify this calculation, note that

BM ′BT = (I − bvvT)(I − pvvT)(I − bvvT) = [I − (2b− b2v2)vvT][I − pvvT]

where b = 1
v2

(
1− 1√

1−v2p

)
and we have used that the matrices commute. We calculate

2b− b2v2 =
1
v2

(
(2− 2√

1− pv2
)− (1− 2√

1− pv2
+

1
1− pv2

)

)

=
1
v2

(
1− 1

1− pv2

)
=

−p
1− pv2

Plugging this in completes the verification

[I − (2b− b2v2)vvT][I − pvvT] = [I +
p

1− pv2
vvT][I − pvvT]

= [I + (
p

1− pv2
− p− p2v2

1− pv2
)vvT] = I

If the old distribution was {x}, the new isotropic distribution is {Bx}, where our formula
for B yields

Bx = x−
(
1− 1√

1− vT vp

)
v(vTx)
vT v

which is computable in time O(n) for any point x. Another explanation for this formula is
that we are just correcting the inertial ellipsoid in the direction of v; this type of update
step is sometimes referred to as a rank-1 update. Using this observation, we can compute
M from scratch once (O(mn2)), round the distribution from scratch once (O(n3 +mn2)),
and then find an outlier (O(mn)) and reround using our formula above (O(mn)) a total of
at most m times. This yields the improved time bound of O(m2n+mn2+n3). If we throw
away less than an ε fraction of the point set, the time bound is just O(εm2n+mn2 + n3).

If we specialize our analysis to Znb and the case that the distribution has full-dimensional
α-core throughout the algorithm, we can obtain a running time with a different dependance
on the relevant parameters. Suppose that on some step of Algorithm 1 with parameter β
we remove all β-outliers and φ (equivalently, the dual ellipsoid volume) increases by a factor
of no more than (1 + δ) — then the remaining data set is (1 + δ)β-outlier free. Because
we may have removed many points, we cannot use the technique just developed above, and
our time bound is O(mn2 + n3) per iteration. However, by our upper and lower bounds on
φ, there are at most log(1+δ) 2Õ(nb) = Õ(nbδ) iterations where φ increases by (1+ δ) or more.
The final bound on the running time is then Õ(mn

3b+n4b
δ) to obtain a (1 + δ)β-outlier free

set.

36

2.4.2 Arbitrary distributions

Now suppose that we are not given µ explicitly, but rather only the ability to sample from
µ. For ease of exposition, we will refer only to the case that the support of µ is in Znb . The
outlier-free restriction of µ will be specified as the part of µ contained in an ellipsoid. The
algorithm for distributions is:

1. Get a set P = {x1, . . . , xm} of m samples from µ.

2. Run the outlier removal algorithm on the discrete point set P with parameter Γ2.

3. Let P ′ be the outlier-free subset of P . Then the outlier-free restriction of P is given
by ΓE(M ′), where M ′ = 1

m

∑
xi∈P ′ xix

T
i . The outlier-free restriction of µ is given by

(1 + δ)ΓE(M ′), where δ ∈ (0, 1/4) is an accuracy parameter.
The main theorem of this section is the following.

Theorem 3 (Sample Complexity) Let

m = O

(
γ2

δ2

(
n log

n

δ
+ log

n(b+ log n)
δ

))
= Õ

(
nγ2

δ2

)

Then with high probability, either outlier removal algorithm run with parameter Γ2 = (1 +
δ)2γ2 returns an ellipsoid T = ΓE(M ′) satisfying
(i) µ((1 + δ)T) ≥ 1− ε
(ii) (1 + δ)T has no (1 + δ)O(1)γ2-outliers
where (γ2, ε) is achieved by the deterministic omniscient algorithm (omniscient in that it
knows the distribution exactly).

For the remainder of this section, assume that the deterministic omniscient algorithm
with parameter γ2 finds a subset S such that µ(S) ≥ 1− ε, and µS has no γ2-outliers. The
statement “µS has no γ2-outliers”, or simply “S has no γ2-outliers” (since µ is implicit), is
exactly that

∀w, max{(wTx)2 : x ∈ S} ≤ γ2E[(wTx)2 : x ∈ S] Pr[x ∈ S] = γ2
∑
x∈S

(wTx)2µ(x)

The max is not over x ∈ µS , but rather x ∈ S. This is an important subtlety. Since S and
T constructed by the algorithm are always convex, whenever we have ∀w,max{(wTx)2 :
x ∈ S} ≤ max{(wTx)2 : x ∈ T}, we will be able to conclude that S ⊆ T . If we defined
the max over x ∈ µS , we would only be able to conclude that µ(T \ S) = 0, which would
increase the length of the proof.

We know that γ2 = Õ(bnε) is always achievable, but in some cases we may do better.
Our bound on running time is proved for arbitrary values of γ2.

Suppose that at some step we can estimate E(M) to within 1 ± δ in every direction.
Let Γ2 = (1 + δ)2γ2. Then every point that we perceive to be a Γ2-outlier will be at
least a γ2-outlier with respect to the true distribution, and so removing them does not
throw away any point that the deterministic algorithm keeps. Similarly, if we perceive the
distribution to have no Γ2-outliers, the true distribution will have no (1 + δ)2Γ2-outliers.
Before removing outliers, we may not have that our working estimate of M , M̄ , is within
1± δ of M . However, whenever we are wrong by more than 1+ δ, there is some true outlier

37

with respect to the original distribution that we throw out even using our flawed estimate
M̄ . This line of reasoning (made rigorous) will allow us to find a (1 + δ)O(1)γ2-outlier-free
subset in space, where γ2 is achieved by the deterministic version of the algorithm. In
lemma 7 we show this for a particular direction in a particular iteration. In lemma 8 we
extend this to all iterations, and in the proof of theorem 3 we extend this to all directions
and all iterations, at every step bounding the sample complexity.

Lemma 7 (Outlier Detection, One Iteration) Fix a direction w. Let S be a subset of
space. Let our number of samples be

m = O(
γ2

δ2
)

and consider the sample distances in direction w given by {wTxi}. Let y denote the true
variance of S and ȳ denote the sample variance,

y =
∑
x∈S

(wTx)2µ(x) ȳ =
1
m

∑
xi∈S

(wTxi)2

Then with constant probability
(i) max{(wTx)2 : x ∈ S} ≤ γ2y ⇒ (1− δ)y ≤ ȳ ≤ (1 + δ)y.
(ii) max{(wTx)2 : x ∈ S} ≤ γ2y and T = {x : (wTx)2 ≤ Γ2ȳ} ⇒ S ⊂ T .

Proof: Property (i) says that we do correctly estimate the variance of an outlier-free
restriction of the distribution, and property (ii) assures us that any outlier-free restriction
of the distribution has no probability mass past Γ2 times the sample variance (i.e., we can
always safely throw away probability mass using the sample variance). Both claims are for
a fixed direction w. Note that S is assumed to be γ2-outlier-free in the hypotheses of both
(i) and (ii). Lemma 8 will not rely upon part (ii) explicitly, but it will involve a similar
argument.

LetXi be the random variable representing the squared distance of xi along the direction
w, Xi = (wTxi)2, or 0 if xi /∈ S. Without loss of generality, assume max{(wTx)2 : x ∈
S} = 1 (by an appropriate scaling). First we show (i). Since µS has no γ2-outliers, we have
y ≥ 1

γ2
. Applying the Chernoff bound to determine the probability that ȳ is not a good

estimate for y, we have
Pr[|mȳ −my| ≥ δmy] ≤ e−δ

2my/3

This occurs with constant probability for m = O(γ
2

δ2
).

Now we show (ii). Let T be as above, and again assume max{(wTx)2 : x ∈ S} = 1
without loss of generality. If S has no γ2-outliers, then y ≥ 1

γ2
, and we would have found ȳ

to be an accurate estimate by the analysis in the previous paragraph. In this case, (1−δ)y ≤
ȳ ⇒ y ≤ (1 + δ)2ȳ, and S has no γ2-outliers implies max{(wTx)2 : x ∈ S} ≤ γ2y ≤ Γ2ȳ.
This then implies S ⊆ T .

Lemma 8 (Outlier Detection, Many Iterations) Fix w. Assume S is
full-dimensional. Let

m = O

(
γ2

δ2
log

n(b+ logn)
δ

)
= Õ

(
γ2

δ2

)

38

Then with constant probability either outlier removal algorithm restricted to w with param-
eter Γ2 produces a subset of space

T = {x : (wTx)2 ≤ t}

for some value t such that
(i) For any subset of space S that has no γ2-outliers along w, S ⊆ T .
(ii) (1 + δ)T has no (1 + δ)8γ2-outliers along w.

Proof: By “either outlier removal algorithm restricted to w”, we simply mean the one-
dimensional version of the two algorithms. Consider S achieved by the deterministic omni-
scient version of the algorithm (restricted to w). Since our outlier removal algorithm only
throws away probability mass when necessary, this S is the largest possible restriction that
is γ2-outlier free. Define y and ȳ as in lemma 7. By lemma 7 part (i), we have that ȳ
is a good approximation to y. This ensures that with good probability, we identify S as
Γ2-outlier-free, and so (i) is proved. It remains to show that, if our algorithm for some
reason chooses a substantially larger set T , then (1 + δ)T has no (1 + δ)8γ2-outliers.

Define Tα = {x : (wTx)2 ≤ α}. Suppose ∃α such that Tα has no Γ2-outliers. Then
T(1+δ)α has no (1 + δ)2Γ2-outliers. This follows from the fact that

max{(wTx)2 : x ∈ T(1+δ)α} ≤ (1 + δ)2max{(wTx)2 : x ∈ Tα}

and E[(wTx)2 : x ∈ Tα] Pr[x ∈ Tα] is a monotonically increasing function of α.
Suppose we estimate that some set T = Tt has no Γ2-outliers (in which case the algorithm

might return T as an answer). Then our sample also leads us to calculate that Tα has no
(1+ δ)2Γ2-outliers for α ∈ [t, (1+ δ)t] by the same reasoning as in the preceding paragraph.
For every t, we will show that for some nearby (within a factor of (1 + δ)) value of α,
we estimate the sample variance of the restriction of µ to Tα with sufficient accuracy. We
proceed to analyze what values of α we need to consider.

Assume without loss of generality that w is a unit vector. An easy upper bound
on max(wTx)2 is 2b

√
n. To develop a lower bound, we will need to use the assump-

tion that S is full-dimensional. For any µS , we can write max(wTx)2 ≥ E[(wTx)2].
By decomposing µS in the manner of lemma 5, we can obtain the stronger statement
max(wTx)2 ≥ E{yj}n

j=1
[(wT yj)2] where the probability distribution on the {yj} is uniform

and the {yj} are full-dimensional. The term E[(wT yj)2] is lower bounded by the smallest
singular value of the {yj}. We have previously shown that the product of the singular val-
ues of such a distribution is at least n−2n. Since no individual singular value is more than
2b
√
n, we have that the smallest is at least n−2n 2n(b+.5 log n) = 2Õ(nb). Therefore we can

restrict our attention to α = (1 + δ)k for k an integer and union bound over the at most
log(1+δ) 2Õ(nb) = O(n(b+logn)

δ) possible values for k.
We now show that if we estimate Tα to have no (1 + δ)2Γ2-outliers, then with good

probability Tα actually has no (1 + δ)6Γ2-outliers with respect to the true distribution,
and by our reasoning above, since there is an α within (1 + δ) of t, T(1+δ)t is (1 + δ)8Γ2

outlier-free.
We do this by showing that if Tα has a (1 + δ)6Γ2-outlier, then with good probability

our sample shows Tα to have at least a (1 + δ)2Γ2-outlier. Let Xi be the random variable
representing the squared distance of xi along the direction w, Xi = (wTxi)2, or zero if
xi /∈ Tα. Without loss of generality, assume α = 1. Define y and ȳ as in lemma 7 (but with

39

Tα in place of S). Then by assumption on Tα, y = E[Xi] ≤ 1
(1+δ)6Γ2 . The condition that

our samples show Tα to have at least a (1 + δ)2Γ2-outlier is ȳ = 1
m

∑
Xi ≤ 1

(1+δ)2Γ2 . We
apply the Chernoff bound,

Pr[ȳ > (1 + ∆)y] < e−∆2my/3

where we have stated the Chernoff bound for the case that ∆ < 1. Let ∆ = 1
y(1+δ)2Γ2 −1

(this yields the event that ȳ > 1
(1+δ)2Γ2 in our probability calculation). If ∆ < 1, then

∆2y =
(

1
(1 + δ)2Γ2

− y

)2 1
y

≥
(

4δ
(1 + δ)6Γ2

)2 1
y

≥ δ2

Γ2

and the probability we do not correctly identify the furthest outlier is at most e−∆2my/3 =
O(1) for m = O(Γ

2

δ2
). If ∆ ≥ 1, then

∆y =
1

(1 + δ)2Γ2
− y ≥ δ

Γ2

and the applicable alternate form of the Chernoff bound

Pr[ȳ > (1 + ∆)y] < e−∆my/3

yields that e−∆my/3 = O(1) for the same setting of m.
Since there are only O(n(b+logn)

δ) different values of α to consider,
m = O(Γ

2

δ2
log n(b+log n)

δ) allows us to union bound over all the possible values of α. This
shows that with constant probability, if we estimate T to have no Γ2-outliers (in which case
our algorithm might return T), then (1 + δ)T has no (1 + δ)8Γ2-outliers. This implies (ii).

We extend the analysis of lemmas 7 and 8 from a fixed direction to all directions and
argue the correctness of the entire algorithm by proving theorem 3.
Proof of Theorem 3: Let S be the ellipsoid found by the deterministic algorithm (i.e. the
outlier-free subset of points lies in this ellipsoid). Assume initially that S is full-dimensional.
Rather than considering the original space, consider the transformed space where S is the
unit sphere.

Consider the many directions w given by a δ′-grid in the unit cube, δ′ = δ
6n . We

form this grid by choosing every w such that the coordinates of w lie in {0, δ′, 2δ′, . . . , 1}.
By our choice of m, we can apply lemma 8 part (i) to each of these (6nδ)

n directions
simultaneously and then union bound. Then with good probability, for every w in the
δ′-grid, max{(wTx)2 : x ∈ T} ≥ max{(wTx)2 : x ∈ S} (i.e., in this direction T contains S).
We now show that for an arbitrary direction w, (1 + δ)T contains S.

Consider an arbitrary unit vector w. By rounding every coordinate of w up or down
to an integer multiple of δ′ we obtain a point on the δ′-grid. The set of all possible such
roundings forms a box surrounding w, and some (not neccessarily unique) subset of n of
these points, which we denote {wi}, satisfy that w is in the convex cone of the {wi}. Since
w is a unit vector, each wi has length |wi| ∈ (1±δ′

√
n), and so ŵi = wi/|wi| is within 2δ′

√
n

of w. Define T (y) to be the distance to the boundary of T along the direction y. Since T
is convex and T (wi) ≥ 1, the quantity T (w) is lower bounded by the minimum distance of
points on the convex hull of the {ŵi} to the origin. Since w is within 2δ′

√
n of each {ŵi},

40

so is the projection of w to their convex hull. Since the point on the convex hull is at most
2δ′
√
n away from ŵi for any i, T (w) ≥ 1 − 2δ′√n ≥ 1 − δ/3. Since S is within 1 of the

origin everywhere, (1 + δ)T contains S. This concludes the proof of (i).
Now consider (ii). Since S ⊂ (1+δ)T , T is full-dimensional as well. For every w in our δ′-

grid, we have that (1+δ)T is (1+δ)8Γ2-outlier-free along w by lemma 8 part (ii). As before,
consider the transformed space in which (1+δ)T is the unit sphere. Let R = E(MT) be the
actual inertial ellipsoid of µT . Let w be an arbitrary unit vector and define {wi} as before.
We have that R(wi) ≥ 1

(1+δ)8Γ2 and we reason as above that R(w) ≥ 1−δ/3
(1+δ)8Γ2 ≥ 1

(1+δ)9Γ2 .
Therefore (1 + δ)T is (1 + δ)9Γ2-outlier-free.

We now remove the assumption that S is full-dimensional. Suppose S is not full-
dimensional, but rather spans a subspace ζ. It suffices to consider w ∈ ζ. For such a
w, the projection of the associated {wi} to ζ yields {w′

i} that are within δ′
√
n of the {wi}

(because they don’t move further than the distance to w upon projection). We can compare
the {w′

i} and w just as we did the {wi} and w previously. Because the max along w′
i is

within a factor (1− δ/3) of the max along wi, and the max along w′
i was lower bounded in

lemma 8, the max along wi is similarly lower bounded even though wi /∈ ζ (the change in
the lower bound on the max is asymptotically negligible). Therefore we can apply lemma 8
part (i) to wi. Thus T (wi) ≥ 1 − δ/3, and so T (w) ≥ 1 − 2δ

3 . Thus (1 + δ)T contains S.
This establishes part (i).

We can extend the proof of part (ii) to the case that T is not full-dimensional in an
identical manner. This concludes the proof of theorem 3.

Corollary 1 (Running Time) The algorithm runs in time Õ(b
2n5

εδ4
).

Proof: We have from section 2.2 that β = γ2 is at most Õ(bn/ε), and so we never need more
than m = Õ(bn

2

εδ2
) samples. Plugging in this value for m to our bounds from section 2.4.1

yields that the algorithm runs in time Õ(b
2n5

εδ4
), which is the bound we referred to in the

introduction. In this time we achieve a (1+ δ)O(1) = 1+O(δ) approximation to the optimal
value of β.

We now pose a related problem: Suppose that we are not given the parameter γ2, but
rather only ε, and asked to find the appropriate γ2. Lemma 9 will show that we can at
any point determine within a factor of (1 + δ) how much of the probability mass is within

a fixed ellipsoid. Since γ2 ∈ [1, Õ(bnε)], there are at most log(1+δ) Õ(
bn
ε) = O(log(bn

ε
)

δ) values
of γ2 to consider (with a loss of at most a factor of (1 + δ) in the value we find for γ2).
Therefore we can simply try them all, estimating for each one whether this γ2 requires us
to throw away more than a (1 + δ)ε fraction of the distribution.

Thus, if the parameters (γ2, ε) are achievable for the deterministic algorithm, and we are
only given ε, we can find a subset of space T satisfying parameters ((1+O(δ))γ2, (1+O(δ))ε).
Our asymptotic running time is still Õ(b

2n5

εδ4
).

Lemma 9 (Probability Mass Location) Let E be an ellipsoid. Let our number of sam-
ples {xi}mi=1 be m = O(1

εδ2
). Then with constant probability, if we estimate a (1+δ)ε fraction

of our samples to be outside of E, at most a (1 + δ)2ε fraction is outside of E, and at least
an ε fraction is outside of E.

Proof: Round E. Let Yi be a random variable, Yi = 1 iff x2
i > 1. Let ȳ = 1

m

∑
Yi and

y = E[yi]. The event that we estimate a (1 + δ)ε fraction of the sample to be outside E

41

when less than an ε fraction truly lies outside E, is y < ε, ȳ ≥ (1 + δ)ε. We can upper
bound the probability of this event using the Chernoff bound

Pr[
∑

Yi ≥ m(1 + ∆)E[Yi]] ≤ e−∆2mE[Yi]/3

where ∆ = (1+δ)ε
y − 1. Then

∆2y = (
(1 + δ)ε

y
− 1)((1 + δ)ε− y) ≥ ((1 + δ)ε

ε
− 1)((1 + δ)ε− ε) = δ2ε

and so the upper bound on the probability is constant for m = O(1
εδ2
). If ∆ ≥ 1, in which

case the alternate form of the Chernoff bound is applicable, we find ∆y ≥ δε, and so the
number of samples is still sufficient.

A similar calculation for the event that y > (1 + δ)2ε, ȳ ≤ (1 + δ)ε using

Pr[
∑

Yi ≤ m(1−∆)E[Yi]] ≤ e−∆2mE[Yi]/3

involves setting ∆ = 1− (1+δ)ε
y , which yields

∆2y = (y − (1 + δ)ε)(1− (1 + δ)ε
y

) ≥ δ2ε

and similarly for the alternate form of the Chernoff bound if ∆ ≥ 1. Therefore the proba-
bility of significantly underestimating the amount of probability mass outside E is at most
a constant for the same value of m.

One consequence of the theorems in this section is that a sample of size Õ(n
2b
ε) is

enough to estimate the inertial ellipsoid of any distribution on Znb (after removing at most
an ε fraction) and thus bring it into nearly isotropic position.

2.5 A Matching Lower Bound

We show that for any ε < 1/4 there exists a distribution µ with support ⊂ Znb such that,
for any S satisfying µ(S) ≥ 1− ε, there exists w such that

max{(wTx)2 : x ∈ S} ≥ β̄E[(wTx)2 : x ∈ S] Pr[x ∈ S] ≥ β̄

2
E[(wTx)2 : x ∈ S]

where β̄ = Ω(nε (b− log 1
ε)). Based on the comparison between our upper and lower bounds

on β in the case that we can’t throw out more than half the distribution

O
(n
ε
(b+ log

n

ε
)
)

vs. Ω
(
n

ε
(b− log 1

ε
)
)

we describe theorem 1 as asymptotically optimal.
We motivate the construction of the worst case distribution by constructing three simpler

distributions, each of which proves a weaker lower bound. The strong lower bound will follow
from examining a distribution that is a composite of the three distributions showing the
weaker lower bounds.

To prove the first weak lower bound, let µ be the uniform distribution on the one-

42

A:
20 21 22 . . . 2b

<−weight

<−position

B:
1− 2ε 2ε

1/
√
ε1

C: D:

Figure 2-1: Lower Bound Constructions

dimensional points {20, 21, ...2b}. An illustration of this µ is given in figure 2-1, part A. We
claim that for any ε < 1

4 , the best achievable (i.e. smallest) β satisfies β = Ω(b). The proof
is simple: suppose the largest data point we keep is 2k. Then (ignoring the factor w since we
are in one dimension), max{x2 : x ∈ S} = 22k, while E[x2 : x ∈ S] ≤ 20+...22k

(b+1)(1−ε) = O(2
2k

b).

Since β = max{·}
E[·] , we find β = Ω(b).

To prove the next weak lower bound, we construct a distribution as in figure 2-1, part
B. Let µ be the probability distribution on one-dimensional points given by µ(1) = 1 −
2ε, µ(1√

ε
) = 2ε. Then for ε < 1

4 , neither point can be thrown away. Thus max{x2 : x ∈
S} = 1

ε , while E[x
2 : x ∈ S] = 3− 2ε, yielding β = Ω(1ε).

For the third weak lower bound, we let µ be a distribution on n-dimensional space. In
particular, let µ be the uniform distribution on n points, one on each coordinate axis, each
one at unit distance from the origin, as illustrated in figure 2-1, part C. For ε < 1

2 , we do
not throw away any points on at least n/2 of the axes. Then for w a unit vector along
one of the axes where the point is not thrown away, we have max{(wTx)2 : x ∈ S} = 1,
E[(wTx)2 : x ∈ S] ≤ 4

n , and thus β = Ω(n).

The composite construction that we use to prove our strong lower bound in illustrated in
figure 2-1, part D. We obtain the composite distribution by taking the distribution of part A,
and making two copies that are weighted and translated as the two points are that compose
the distribution of part B. We then place a copy of this new one-dimensional distribution
along each axis, as in the distribution of part C. We now restate this construction formally
and proceed to analyze it.

Fix n, ε and b′ = b
2 − 1

4 log
1
ε . Let µ be a copy of the following distribution along each

axis. Let there be 2b′ points at distances

20, 21, . . . , 2b
′−1,

2b
′

√
ε
,
2b

′+1

√
ε
, . . .

22b
′−1

√
ε

43

and consider the distribution that places a (1−2ε) fraction of the probability mass uniformly
on the first b′ points and a 2ε fraction uniformly on the remaining b′ points. This distribution
satisifes that the maximum bit length along an axis is log 22b′√

ε
= b.

There are many ways of choosing a subset S of this distribution, but we can quickly
restrict the set of possible choices. First we show that it never helps to treat the different
axes asymmetrically. Suppose that this statement is not true. We begin by noting that for
a distribution concentrated on the axes and fixed S, the vector w that maximizes

max{(wTx)2 : x ∈ S}
E[(wTx)2 : x ∈ S] Pr[x ∈ S]

always occurs on an axis — to see this, note that the rounding transformation need only
scale the axes, the maximizing w after rounding is in the direction of some point (i.e., along
an axis), and therefore the maximizing w before rounding is also along an axis. Let µ1 be
a distribution concentrated on the axes and symmetric on each axis on which it is possible
to throw out an ε fraction of the distribution and achieve parameter β̄. Further suppose
that this ε is the minimum ε such that this β̄ is achievable, and the only S achieving β̄
is asymmetric. Let axis i be an axis that this maximum outlier occurs on, and suppose
that along axis i we throw out an εi fraction of the total distribution. If εi ≤ ε/n, then
let S′ be the subset of µ1 where we throw out the same points along every axis that we
threw out along axis i in S. Then we have ε′ = nεi ≤ ε, and yet S′ achieves β̄ along each
axis, contradicting the assumption that there was no symmetric subset we could throw out
achieving the same (ε, β̄). If εi > ε/n, then there is some other axis j such that along axis j
we throw out an εj < εi fraction of the probability distribution, but achieving β̄j ≤ β̄ along
that axis (i.e. max{xj : x ∈ S} ≤ β̄jE[x2

j : x ∈ S] Pr[x ∈ S]). Constructing S′′ by taking
S and replacing our choice of points to throw out along axis i with the points thrown out
along axis j then yields a contradiction because ε′′ < ε. Thus we can restrict our attention
to S symmetric.

For any direction w along an axis, the projection onto w of any point on the other n− 1
axes is 0, so we obtain

E[(wTx)2] =
1
n
E[x2, µ one-dimensional]

We ignore the factor of n for the rest of the proof and restrict our attention to a single
coordinate axis. Suppose the furthest point kept by S achieving parameters (ε, β̄) is the
point with exponent k. By our choice of distribution, we cannot have thrown out more than
half the points with a 1√

ε
factor, and so we have max{x2 : x ∈ S} = 22k

ε , k > b′. Calculating
the expectation

E[x2 : x ∈ S] Pr[x ∈ S] ≤ 1− 2ε
2b′

(20 + 22 + . . .+ 22b
′−2) +

2ε
2b′
1
ε
(22b

′
+ 22b

′+2 + . . .+ 22k)

≤ 22b
′−1

2b′
+
22k+1

b′
≤ 22k+2

b′

yields that β̄ = max[·]
E[·] = max[·]

E[·] Pr[·] Pr[·] ≥
b′
4ε(1 − ε) ≥ b′

8ε for the one-dimensional case. Thus
our lower bound in the n-dimensional case is

β̄ ≥ n

16ε
(b− log 1

ε
)

44

2.6 An Approximation Algorithm

We showed earlier in the paper that for any distribution µ, and any ε we can achieve
β = O(nε (b+ log

n
ε)). A question that naturally arises is how well we can do on a particular

distribution compared to the best possible on that particular distribution. Formally, given
µ and ε, we seek S minimizing β subject to the constraints that

(i) µ(S) ≥ 1− ε
(ii) ∀w,max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S]
This is really a bicriteria approximation problem with parameters (β, ε). Note that in

this case, we are looking for the normalized probability distribution to be β-outlier free.
We show this problem to be NP-hard even for one-dimensional data by a reduction from
the subset-sum problem. We then exhibit a (1

1−ε , 1)-approximation algorithm for this task
in the case that we are given the distribution explicitly. If we can only sample from the
distribution µ, our algorithm yields a (1

1−ε + δ, 1+ δ)-approximation for any constant δ > 0
with high probability.

The subset-sum problem is: given pi ∈ (0, 1), i ∈ {1, ...n}, find I maximizing
∑
i∈I pi

subject to the constraint that
∑
i∈I pi ≤ 1. To form a corresponding instance (µ, ε) of the

outlier removal problem, let P =
∑
i pi, ε =

1
2P , and let µ be given by

• a point at 1 with probability mass 1
2

• ∀i, a point at 0 with probability mass p′i = pi
2P

Let S be a possible solution to this instance of the outlier removal problem. Since P >
1 (otherwise the subset-sum problem is trivial), the point at 1 cannot be removed, and
hence maxx∈S = 1. If we remove probability mass ε′ of the points at 0, E[x2 : x ∈ S] =
(1) 1

2
+(0)(1

2
−ε′)

1−ε′ = 1
2−2ε′ . Thus the ratio

max[·]
E[·] = 2− 2ε′, and minimizing this subject to ε′ ≤ ε

is exactly the problem of finding the optimal solution I to the subset-sum problem.
We now prove a lemma that enables the approximation result.

Lemma 10 (Preservation of Outliers) Let µ be a distribution. Any β-outlier for µ is
at least a β(1− ε)-outlier with respect to any subset S satisfying µ(S) ≥ 1− ε.

Proof: Let x be a β-outlier in the original distribution. Then for some w, (wTx)2 >
βE[(wTx)2] For any S, we have E[(wTx)2 : x ∈ S] Pr[x ∈ S] ≤ E[(wTx)2] and so x satisfies
(wTx)2 > β(1− ε)E[(wTx)2 : x ∈ S]

The approximation algorithm is simply either algorithm described in section 2.4, with
error parameter δ in the case that we are sampling from µ. We could determine the optimal
β for a fixed ε through a binary search. Suppose the value βOPT is achievable by the
restriction of µ to some S satisfying µ(S) ≥ 1 − ε. Anytime our algorithm sees a point
that is a β′-outlier with respect to the unnormalized distribution, β′ > βOPT

1−ε , we know
that this cannot be a (≤ βOPT)-outlier under any restriction of µ by lemma 10. So this
point will have to be thrown out by the optimal solution. Thus running our algorithm with
β = βOPT

1−ε forces us to throw away no points that the optimal solution does not also throw
away. This yields that we achieve a 1

1−ε -approximation in the case of an explicitly provided
distribution. As before, the running time is O(m2n) for m > n.

The outlier removal algorithm in fact finds an approximation to β for every ε in one
pass. The algorithms of section 2.1 can be used to define an outlier ordering of a point
set, namely, the first point that is an outlier, the second point, etc. Now to approximate

45

the best possible β for a particular value of ε we simply remove the initial ε fraction of the
points in the outlier ordering one at a time, and then look back to see the lowest value of
β achieved by any ε′ < ε.

2.7 Standard Deviations from the Mean

We prove a variant of our theorem that shows we can find a large subset of the original
probability distribution where no point is too many standard deviations away from the
mean.

Corollary 2 (Standard Deviations from the Mean) Let µ be a probability distribu-
tion on Znb . Let S be a subset of space. Denote by µ(S) the probability that x chosen
according to µ is in S. Let x̄ = E[x : x ∈ S] and σ2

w = E[(wT (x − x̄))2 : x ∈ S]. Then for
every ε > 0, there exists S and

β = O
(n
ε
(b+ log

n

ε
)
)

such that
(i) µ(S) ≥ 1− ε
(ii) max{wT (x− x̄) : x ∈ S} ≤ √βσw for all w ∈ Rn

Proof: The proof of the corollary is much like the proof of theorem 1. The appropriately
modified outlier removal algorithm for constructing S is simply to translate the data set so
that the origin coincides with the mean before each removal step. We can easily show that
translating µ so that the origin coincides with the mean never decreases the volume of the
dual ellipsoid of µ. We then explain how a variation on our potential function φ, and the
upper and lower bounds on φ, imply that the modified algorithm does not throw out more
than an ε fraction of the data set.

To analyze the volume of the dual ellipsoid, consider a fixed direction w and let 1
r2
=

E[(wTx)2] (r is the length of the dual ellipsoid in this direction). If we translate the origin
to a value z along w, then have 1

r2
= E[(wT (x− z))2]. Single variable calculus shows that

the value maximizing r is z = E[wTx/|w|], which is just the mean. Thus translating our
origin to x̄ maximizes the length of the dual ellipsoid in every direction simultaneously.
Thus the tradeoff between drop in probability mass and growth of the dual ellipsoid shown
in lemmas 1 and 3 also holds for the modified algorithm.

To describe our modified φ, we need to define the α-affine-core of a distribution µS to be
µT where T ⊂ S is chosen to be maximum subject to the requirement that the affine hull of
{µT minus an α fraction of µT } is not of lower dimension than the affine hull of µT for any
choice of the α fraction. Under this definition, an appropriately modified version of lemma 4
is still true. Define φ′(µS) to be an appropriately modified φ, φ′(µS) = V ol(W (MT)) where
µT is the α-affine-core of µS . We now explain how to derive upper and lower bounds on φ′

analogous to lemma 5 in the case that the α-affine-core of µS is full-dimensional.
The lower bound is immediately implied by the argument above that translating the

origin to the mean does not decrease the dual volume. To derive the upper bound, consider
a set A of n + 1 points {ai} whose affine hull is full-dimensional. In lemma 5, we argued
that Det(AAT) was a positive integer, not zero by choice of A, and thus Det(AAT) ≥ 1.

46

Letting ā = 1
n+1

∑n+1
i ai, we must lower bound Det(

∑n+1
i (ai − ā)(ai − ā)T). Writing

(n+1)2nDet(
n+1∑
i

(ai− ā)(ai− ā)T) = Det(
n+1∑
i

((n+1)ai− (n+1)ā)((n+1)ai− (n+1)ā)T)

we have that the second term is the positive non-zero determinant of an integer matrix, and
hence the original determinant is at least 1

(n+1)2n . Because the origin corresponding to the
mean of a set of points maximizes the dual volume, this bound holds for all possibilities for
the origin. The upper bound on φ′ is then (nα)

n(n+ 1)2nf(n).

To prove a statement analogous to lemma 6 for the cumulative drop in φ′, we revisit
the construction of µ′

T ′ , µ′
S′ from µR, µS , µT . Define these objects just as in the proof of

lemma 6. We have that Det(M ′
S′) ≤ Det(MR) when the origin is the mean of µR, and so

φ′(µ′
S′) ≥ φ′(µR) to at least the same extent. We now calculate

φ′(µ′
T ′)

φ′(µT) . Letting the origin
correspond to the mean of µT , we have φ′(µT) = f(i)/Det(MT) whereMT =

∑
y∈T yy

Tµ(y).
The mean of µ′

T ′ is given by x̄ = αx
α+µ(T) . Then

M ′
T ′ =
∑
y∈T

(y − x̄)(y − x̄)Tµ(y) + α2(x− x̄)(x− x̄)T =


∑
y∈T

yyTµ(y)−
∑
y∈T

x̄yTµ(y)−
∑
y∈T

yx̄Tµ(y) + x̄x̄Tµ(T)


+ α2(x− x̄)(x− x̄)T =

∑
y∈T

yyTµ(y) + x̄x̄Tµ(T) + α2(x− x̄)(x− x̄)T =
∑
y∈T

yyTµ(y) +
µ(T)2α2 + µ(T)α2

(µ(T) + α)2
xxT

Performing the same analysis using Gaussian elimination as we did previously and then
computing the ratio yields

φ′(µ′
T ′)

φ′(µT)
=

f(i+ 1)
f(i)

(µ(T) + α)2

µ(T)α2(1 + µ(T))x[i+ 1]2

⇒ φ′(µ′
T ′)

φ′(µT)
φ′(µS)
φ′(µ′

S′)
=

(µ(T) + α)2

µ(T)α2(1 + µ(T))
µ(S)α2(1 + µ(S))
(µ(S) + α)2

We will now assume that we never remove more than an ε fraction of the probability mass.
This is not circular reasoning — just as in the proof of theorem 2 using algorithm 2, the
upper bound on φ′ under this assumption will imply that we never remove more than an
ε/2 fraction of the probability mass, and since we never remove more than an ε/2 fraction
on any one step, the assumption will always hold. Using this assumption, we calculate

(µ(T) + α)2

(µ(S) + α)2
≥ (1− ε)2

12
≥ 1
4
,

µ(S)α2(1 + µ(S))
µ(T)α2(1 + µ(T))

≥ 1

Multiplying these factors together over the at most n steps in the iterative construction
yields an additional cumulative factor of at most 22n, which is negligible. Combining this
bit of additional slack with the new bound on φ′ in the full dimensional case and the
possibility that we only have an (α/n)-affine-core (as at the end of the proof of lemma 6),

47

we finally arrive at a bound on the total cumulative drop in φ′ of

2n(b+3 log n
α

+3)

This immediately implies the claimed value for β in corollary 2.
We now show that the 1

1−ε -approximation algorithm of section 2.6 naturally extends to

a
(

1−ε
1−3ε

)
-approximation algorithm in the setting where we measure outlierness with respect

to the mean, rather than a fixed origin. To establish this, it suffices to prove the following
analogue of lemma 10.

Lemma 11 (Outlier Preservation Variant) Let µ be a distribution. As in Corollary 2,
measure outlierness by squared distance from the mean rather than from a fixed origin.
Suppose x0 is a β-outlier for µ, and no other point is a β′-outlier for β′ > β. Then x0 is
at least a β 1−3ε

1−ε -outlier with respect to any subset S satisfying µ(S) ≥ 1− ε.

Proof: As in the proof of lemma 10, consider a unit vector w such that (wTx0)2 >
βE[(wTx)2], and let β = γ2. The difference between this bound and the bound of lemma 10
will result from the mean possibly moving closer to x0 after removing other points {xi}.
Without loss of generality, let the mean of µ be the origin, and let E[(wTx)2] = 1.

Suppose that to reach S we remove points {xi} of total probabilty mass ε′ ≤ ε. Then

E[(wTx)2 : x ∈ S] Pr[x ∈ S] = 1−
∑
i

(wTxi)2µ(xi)

⇒ E[(wTx)2 : x ∈ S] = (1−
∑
i

(wTxi)2µ(xi))/(1− ε′)

We calculate the new mean as

E[(wTx) : x ∈ S] Pr[x ∈ S] = 0−
∑
i

(wTxi)µ(xi)

⇒ E[(wTx) : x ∈ S] = (0−
∑
i

(wTxi)µ(xi))/(1− ε′)

Therefore the new distance of x0 to the mean is
(
γ − (0−∑i(wTxi)µ(xi))/(1− ε′)

)
. We

calculate

γ′2 =
distance2

variance
=

(
γ +

∑
i(w

T xi)µ(xi)
1−ε′

)2
(

1−∑i(w
T xi)2µ(xi)

1−ε′
) =

((1− ε′)γ +
∑
i(w

Txi)µ(xi))2

(1− ε′)(1−∑i(wTxi)2µ(xi))
Let x̄ =

∑
wT xiµ(xi)
ε′ , the average of the points. Then removing x̄ of weight ε′ changes the

numerator by the same amount, and x̄2ε′ ≤ ∑(wTxi)2µ(xi), so the denominator cannot
decrease. The derivation of x̄2ε ≤∑x2

iµ(xi) follows from

(
∑

λixi)2 ≤
∑

λix
2
i ,
∑

λi = 1, λi ≥ 0

which follows from
(
1
2
a+

1
2
b)2 ≤ 1

2
a2 +

1
2
b2

48

along the same lines that fact 2 follows from fact 1 in section 2.10. Now we have shown we
may consider removing only a single point x̄ of weight ε′ in order to lower bound γ′2. We
may view this as a constrained maximization problem over x̄, with constraints |x̄| ≤ γ, and
x̄2ε′ ≤ 1. The expression for f(x̄) = γ′2 is

γ′2 =
((1− ε′)γ + ε′x̄)2

(1− ε′)(1− ε′x̄2)

If the constraint x̄2ε′ ≤ 1 were tight, then the variance of the distribution after removing x̄
would be 0, which would imply γ′2 = 1. If the constraint |x̄| ≤ γ were tight, we would have

γ′2 =
((1− ε′)γ − γε′)2

(1− ε′)(1− γ2ε′)
= γ2 (1− 2ε′)2

1− ε′
1

1− γ2ε′
≥ γ2

(
1− 2ε′
1− ε′

)2

≥ γ2

(
1− 3ε′
1− ε′

)

If neither constraint is tight, we may solve the unconstrained optimization problem by
setting df(x̄)dx̄ = 0 to find the local maximum, and then evaluating f(x̄) at this maximum.

f(x̄) = γ′2 =
1

1− ε

u(x̄)2

v(x̄)

df(x̄)
dx̄

=
1

1− ε

(
2u(x̄)u′(x̄)

v(x̄)
− u(x̄)2v′(x̄)

v(x̄)2

)
= 0 ⇒

2v(x̄)u′(x̄)− u(x̄)v′(x̄) = 0 ⇒
2(1− ε′x̄2)(ε′)− ((1− ε′)γ + ε′x̄)(−2ε′x̄) = 0 ⇒

(1− ε′x̄2) + ((1− ε′)γ + ε′x̄)x̄ = 0 ⇒

1 + γx̄− ε′γx̄ = 0 ⇒ x̄ = − 1
(1− ε′)γ

f(x̄) =
((1− ε′)γ − 1

(1−ε′)γ ε
′)2

(1− ε′)(1− 1
(1−ε′)2γ2 ε

′)
=

((1− ε′)2γ2 − ε′)2

(1− ε′)((1− ε′)2γ2 − ε′)
=

γ2
(1− ε′)2 − ε′

γ2

(1− ε′)
≥ γ2

(
1− 3ε′
1− ε′

)
which proves the lemma.

49

2.8 An Implementation

Let X be an n × m matrix whose columns are the points of our distribution. Let m, n,
beta, epsilon be the values for m,n, β, ε, and let the boolean variable done indicate
whether we are finished removing outliers. In the case that X is full dimensional throughout
the algorithm (a common case), a complete implementation is given by the following matlab
code:

%% requires X,m,epsilon,beta
done = 0
while(~done)

done = 1
M = X*X’/m
Y = M^(-.5)*X %% Y is isotropic version of X
for i = 1:m, %% remove current outliers
if Y(:,i)’*Y(:,i) > beta, X(:,i)=0, done = 0, end

end
end

Adding in the code for X not full dimensional yields

%% requires X,m,n,epsilon,beta
done = 1
while(done)

done = 0

M = X*X’/m %% round X
[V,D] = eig(M^(.5))
P = zeros(n,n)
for i=1:n,
if(D(i,i) ~= 0)

P = P + V(:,i)*V(:,i)’/D(i,i)
end

end
Y = P*X %% Y is isotropic version of X lying in span(X)

for i = 1:m, %% remove current outliers
if Y(:,i)’*Y(:,i) > beta, X(:,i)=0, done = 1, end

end
end

As of the Spring of 2002, a java applet illustrating the outlier removal algorithm is
available at
http://theory.lcs.mit.edu/~jdunagan/

2.9 Miscellanea

We present here some further thoughts on outliers that did not fit into the development of
the material earlier in the thesis. We begin by showing that one manner of interpolating

50

between the hypotheses on µ used in theorems 1 and 2 is not sufficient to establish a bound
on β.

2.9.1 Interpolating Between Discrete and Arbitrary Support

Suppose the distribution µ has support in BR \Br√n. We show that such a µ may still have
unbounded β. The construction is in two dimensions.

Let R = 2, r = 1/2. Let µ be the uniform distribution over the set of points
{(±1,±2−j)}kj=1 where k is a parameter. This µ is illustrated in figure 2-2. We have clearly
satisfied the hypothesis on the support of µ.

Figure 2-2: Weaker Support Counterexample

Considering the direction w = (0, 1), the best possible β achievable without removing
more than half the distribution is Ω(k), just as in the construction of distribution A in
section 2.5. Since k is unbounded by the conditions on the support of the distribution, β is
similarly unbounded.

2.9.2 Discrete Support: Rationals versus Integers

A natural question is whether theorem 1 can be extended to distributions whose support
is the set of b-bit rationals. It is easy to see that the answer is yes for β = Õ(n

2b
ε). This

follows from the fact that the absolute value of the determinant of any full-rank nxn matrix
of b-bit rationals is at least 2−Õ(n2b).

I am unaware of an example of such a matrix with non-zero determinant of absolute
value less than 2−Õ(nb). If this considerably tighter lower bound were to hold in general,
it would straightforwardly imply that β = Õ(nbε) is achievable for b-bit rationals as well. I
hypothesize that if the weaker lower bound is correct, then there exists some distribution
showing a similar lower bound on the best achievable β of Õ(n

2b
ε).

2.9.3 Some Further Thoughts on Optimization

The optimization version of our algorithm may be described as replacing the original objec-
tive function by a simpler objective function that is nonetheless close to the original. This
raises the question of whether trying to optimize against the original objective function is
something we would really want to do in practice, or whether the simpler objective function
should be considered the true object of interest. For the remainder of this section, we will
suppose that the original objective function (normalized β) is indeed the object of interest.

51

We do not fully understand the complexity of this optimization problem, but we present
some observations that may be helpful for its future study. Our hardness reduction is
from the problem subset-sum, which is known to admit a fully polynomial approximation
scheme, yet we only present an approximation guarantee of 1

1−ε in the fixed origin case,
and an inferior guarantee in the case of standard deviations from the mean. Our current
approximation algorithms can be seen to have worst-case behaviour given by the claimed
ratios; the derivations of the approximation ratios give explicit constructions of distributions
leading to this performance. We leave it as an open question whether a substantially better
degree of approximation is possible.

In one-dimension, we can show that the case of unweighted points is polynomial-time
solvable. This is because the best possible set of points to remove always consists of some
part points closest to the origin and the rest points furthest from the origin. We can enumer-
ate all such subsets in time O(m2). In n-dimensions, we do not know such a characterization
even for the unweighted case. We leave the complexity of the unweighted version of the
optimization problem in n-dimensions as another open question.

2.9.4 Robust Statistics

In robust statistics, the choice of the median as the quintessential robust statistic is com-
monly motivated by describing it as a “robust version of the mean.” In particular, it is
noted that for any data set, the mean of the data set can be changed by an arbitrary
amount simply by moving one of the data points to infinity. In contrast, the median does
not “go to absurdity,” as the literature commonly puts it, until at least half of the data has
been so changed by an adversary.

This criterion of robustness is clearly not enough: we also want the statistic to have
some relationship to the data. Otherwise, the number 0 would always be a good robust
statistic, as it is impervious to a malicious change to the entire data set.

Many robust statistics do not have a simple relationship to their non-robust predecessor.
For example, the robust covariance measure of Donoho and Stahel[MY 95] weights the
observed data points by a function of the median absolute deviation of all the data points
from some origin before computing the traditional covariance of the newly weighted data.

We propose a methodology for constructing robust statistics that is, to the best of our
knowledge, new: let the robust mean be the mean on an outlier-free subset of the data.
Define other robust statistics similarly. One advantage of this approach is that it only takes
a single sentence to define it, and the ease of implementation that we saw in section 2.8 is
preserved. Exhaustively analyzing this statistic is not a goal of this thesis, but we present
some further discussion here.

In the PAC model that has achieved such prominence in machine learning, it is asked
only that a hypothesis be computed that is valid on at least a 1− ε fraction of the data set
in time polynomial in 1

ε . Because we cannot hope to know what happens on an unknown
distribution with probability more than 1− ε unless we draw more than 1

ε samples, this is a
very reasonable constraint. The assumption that our data does not consist of arbitrary reals,
but is instead discretized, as we assumed in theorem 1, intuitively seems to take advantage
of the fact that modern statistics relies on computers. As a rule of thumb, numbers on
computers are represented by binary integers, or some variant thereof (i.e., floating point
format).

These two observations provide some justification for our proposal to define a robust
statistic as the statistic over an outlier-free subset of the data. A 1 − ε fraction of the

52

data set is all we can hope to speak about confidently if we have only 1
ε samples, and the

β on this subset will be bounded under some conditions. We do not claim that the b-bit
property holds for all data that is collected in practice, but we believe it suggests that a
small value of β may commonly arise in practice. Also, not all robust statistics are efficiently
computable, nor do they necessarily have polynomially bounded sample complexity — the
general methodology we propose here preserves the ease with which the non-robust statistic
could be computed.

We now give some background for our theorem on robust estimators. For a one-
dimensional data set, define a δ-median to be a point such that at least a δ fraction of the
data lies to the left of the point and at least a δ fraction to the right. In n-dimensions, call
a point a δ-median if, for every direction w, it satisfies the definition of the one-dimensional
δ-median under projection to w.

Using Helly’s theorem, one can prove that 1
n+1 -medians exist for any n-dimensional data

set (or distribution). Such a point is called a centerpoint. Centerpoints were proposed by
Donoho and Gasko[DG 92] as a robust estimator for high-dimensional data. Donoho and
Gasko showed centerpoints to have a high breakdown point, which is a technical criterion of
“robustness” that we shall not discuss further here.

Teng et al [CEMST 93] gave the first polynomial time algorithm for computing an
approximate center point (polynomial in d). Their algorithm produces Ω(1

n2)-medians. We
show that the algorithm of section 2.7 produces 1

2γ2(1−ε) -medians. For a distribution on Znb ,
this yields Ω̃(1

nb)-medians.

Theorem 4 (A Robust Mean) Let µ be a distribution, let x̄ = E[x : x ∈ S], and suppose
S satisfies
(i) µ(S) ≥ 1− ε
(ii) max{(wT (x− x̄))2 : x ∈ S} ≤ γ2E[(wT (x− x̄))2 : x ∈ S] for all w ∈ Rn
Then x̄ is a 1

2γ2(1−ε) -median.

Proof: Suppose initially that µ(S) = 1. Without loss of generality, consider a particular
direction given by the unit vector w, and assume that wT x̄ = 0 and E[(wTx)2] = 1. Since
we are restricting our attention to w for the rest of the proof, we may define yi = wTxi.
Let {yi} denote the distribution µ on S, and let I denote the index set. We partition I and
define δ± via

I− = {i : xi < 0} I+ = {i : xi ≥ 0}
δ− =

∑
i∈I−

µ(xi) δ+ =
∑
i∈I+

µ(xi)

Then we have ∑
i∈I−

xiµ(xi) +
∑
i∈I+

xiµ(xi) = 0
∑
i∈I

x2
iµ(xi) = 1

Using that |xi| ≤ γ, we obtain

1 =
∑
i∈I

x2
iµ(xi) ≤

∑
i∈I

γ|xi|µ(xi) = γ(
∑
i∈I+

xiµ(xi)−
∑
i∈I−

xiµ(xi))

= γ(2
∑
i∈I+

xiµ(xi)) ≤ 2γ2δ+

From this we conlude that δ+ ≥ 1
2γ2
, and similary for δ−. Dropping the assumption that

53

µ(S) = 1 turns our lower bound into 1
2γ2(1−ε) .

We speculate that there are more theorems to be proved about this method for con-
structing robust statistics, but we stop here for now.

2.10 Some Properties of Matrices

The proof in section 2.3 relied on fact 2, which we speculate to be well-known. We present
the proof of this fact here since it uses techniques that are otherwise not necessary in the
rest of section 2.3.

Fact 1 For X,Y positive definite

Det((X + Y)/2) ≥
√
Det(X)Det(Y)

Proof: This statement is equivalent to (clearing denominators and squaring twice)

Det(XY) ≤ Det2((X + Y)/2)

which is equivalent to

1 ≤ Det2((X + Y)/2)
Det(XY)

= Det(
1
4
(X + Y))Det(X−1)Det(X + Y)Det(Y −1)

= Det(
1
4
(X + Y)(X−1)(X + Y)(Y −1))

= Det(
1
4
(I + Y X−1)(XY −1 + I))

= Det(
1
4
(Y X−1 + 2I +XY −1))

= Det(
1
4
(A+ 2I +A−1))

where we let A = Y X−1 at the very end. Also let B = A+2I+A−1

4 . We have reduced to the
case of showing that Det(B) ≥ 1. We will show the stronger claim that every eigenvalue of
B is at least 1. Consider an arbitrary (eigenvector, eigenvalue)-pair of A, (e, λ). Then

Be =
1
4
(λ+ 2 +

1
λ
)e

Since 1
4(λ+2+

1
λ) ≥ 1, we have that e is an eigenvector of eigenvalue at least 1 for B (this

used that λ ≥ 0, which is true since A is positive definite). Since the eigenvectors of A form
an orthonormal basis of the whole space, all of B’s eigenvectors are also eigenvectors of A.

Fact 2 For positive definite Xi and
∑

λ′i = 1, λ
′
i ≥ 0,

Det(
∑
i

λ′iXi) ≥
∏
i

Det(Xi)λ
′
i

54

Proof: This is a straightforward generalization of fact 1.
Suppose first that for each i, λ′i is exactly equal to pi/2k for some integer pi. In this

case, we may apply fact 1 iteratively to find

Det(
2k∑
i=1

X ′
j) ≥

2k∏
i=1

Det(X ′
j)

(1/2k)

Equating pi of the {X ′
j} to Xi for each i, we recover fact 2 exactly. For general {λ′i}, we

have that the theorem must hold for any k-bit binary approximation to the λ′i; fact 2 then
follows from standard continuity arguments.

55

56

Chapter 3

Perturbations

We begin by defining the notation that we will use in this chapter. We then define Renen-
gar’s condition number and the smoothed analysis model. We conclude by stating the main
theorem to be proved in this chapter.

3.1 Notation, Definitions, Main Result

Throughout this chapter we use the notational convention that

• lower case letters such as a and α denote scalars,

• bold lower case letters such as a and b denote vectors,

• capital letters such as A denote matrices, and

• bold capital letters such as C denote convex sets.

If a1, . . . ,an are column vectors, we let [a1, . . . ,an] denote the matrix whose columns
are the ais.

For a vector a, we let ‖a‖ denote the standard Euclidean norm of the vector. We will
make frequent use of the Frobenius norm of a matrix, ‖A‖F , which is the square root of the
sum of squares of the entries in the matrix. We extend this notation to let ‖A,a‖F denote
the square root of the sum of squares of the entries in A and a. Different choices of norm
are possible; we use the Frobenius norm throughout this chapter. The following proposition
relates several common choices of norm:

Proposition 1 (Choice of Norm) For an n-by-d matrix A,

‖A‖F√
dn

≤ ‖A‖∞ ≤ ‖A‖F , and

‖A‖F√
d

≤ ‖A‖OP ≤ ‖A‖F ,

where ‖A‖OP denotes the operator norm of A, maxx 	=0
‖Ax‖
‖x‖ .

We also make use of the following definitions:

Definition 4 (Ray) For a vector p, let Ray (p) denote {αp : α > 0}.

57

Definition 5 (Open Convex Cone) An open convex cone is a convex set C such that
for all x ∈ C and all α > 0, αx ∈ C, and there exists a vector t such that tTx < 0 for all
x ∈ C.

Warning 1 (Open Convex Cone?) An open convex cone cannot contain the origin, and
is not necessarily open in the topological sense.

Definition 6 (Positive Half-Space) For a vector a we let H(a) denote the half-space of
points with non-negative inner product with a.

For example IRd and H(x) are not open convex cones, while {x : x0 > 0} and Ray (p)
are open convex cones.

These definitions enable us to express the feasible x for the linear program

Ax ≥ 0 and x ∈ C

as

C ∩
n⋂
i=1

H(ai),

where a1, . . . ,an are the rows of A. Throughout this chapter, we will call a set feasible if
it is non-empty, and infeasible if it is empty. Thus, we say that C ∩⋂ni=1H(ai) is feasible
if the corresponding linear program is feasible.

3.1.1 Definition of Condition Number for Linear Programming

For a feasible linear program of the form,

max cTx s.t. Ax ≤ b (1)

we follow Renegar [Ren 94, Ren 95a, Ren 95b] in defining the primal condition number, CP ,
of the program to be the normalized reciprocal of the distance to ill-posedness. A program
is ill-posed if the program can be made both feasible and infeasible by arbitrarily small
changes to the pair (A, b). The distance to ill-posedness of the pair (A, b) is the distance
to the set of ill-posed programs under the Frobenius norm. We similarly define the dual
condition number, CD, to be the normalized reciprocal of the distance to ill-posedness of
the dual program. The condition number, CPD, is the maximum of CP and CD.

We can equivalently define the condition number without introducing the concept of
ill-posedness. For programs of form (1), define C(1)

P (A, b) by

Definition 7 (Primal Distance to Ill-Posedness)

(a) if Ax ≤ b is feasible,

C
(1)
P (A, b) = ‖A, b‖F / sup {δ : ‖∆A,∆b‖F ≤ δ implies (A+∆A)x ≤ (b+∆b) is feasible} ,

(b) if Ax ≤ b is infeasible,

C
(1)
P (A, b) = ‖A, b‖F / sup {δ : ‖∆A,∆b‖F ≤ δ implies (A+∆A)x ≤ (b+∆b) is infeasible}

58

The dual of a program of form (1) is

min bTy s.t. ATy = c, y ≥ 0,

and we define the dual condition number, C(1)
D (A, c), analogously.

Any linear program may be expressed in form (1); however, transformations among lin-
ear programming formulations do not in general (and commonly do not) preserve condition
number [Ren 95a]. We will therefore have to define different condition numbers for each
normal form we consider. For linear programs with canonical forms:

max cTx s.t. Ax ≤ b, x ≥ 0 and its dual min bTy s.t. ATy ≤ c, y ≥ 0 (2)
max cTx s.t. Ax = b, x ≥ 0 and its dual min bTy s.t. ATy ≤ c (3)

find x �= 0 s.t. Ax ≤ 0 and its dual find y �= 0 s.t. ATy = 0, y ≥ 0 (4)

we define their condition numbers, C(2)
PD, C

(3)
PD and C

(4)
PD, analogously. We follow the con-

vention that 0 is not considered a feasible solution to (4).
As we mentioned in the introduction, the condition numbers for numerous other prob-

lems (i.e., matrix inversion) are defined as the sensitivity of the output to perturbations
in the input, and then shown to be equivalent to the distance to ill-posedness. Renegar
inverts this scheme by defining the condition number for linear programming to be distance
to ill-posedness, and then showing that the condition number does bound the sensitivity of
the output to perturbations in the input [Ren 94, Ren 95a].

3.1.2 Smoothed Analysis of the Condition Number

Following [ST 01], we perform a smoothed analysis of these condition numbers. That is,
we bound the distributions of these condition numbers for arbitrary programs under slight
perturbations. We then derive bounds on the expectations of the logarithms of the condition
numbers in terms of the size of the program and the magnitude of the perturbation.

For a linear program specified by (Ā, b̄, c̄), we consider the condition number of the
program specified by (A, b, c), where A, b, and c are a Gaussian random matrix and vectors
of variance σ2 centered at Ā, b̄ and c̄ respectively. As the condition numbers are unchanged
by multiplying all the data by a constant, we assume without loss of generality that in each
input form the Frobenius norm of the data is at most 1. This also provides a scaling of the
program so that σ measures the relative size of the random perturbation. For completeness,
we recall needed facts about Gaussian random variables in section 3.8.1.

The following is the principal theorem of this chapter:

Theorem 5 (Smoothed Complexity of Renegar’s Condition Number) For every
Ā, b̄, and c̄ such that

∥∥Ā, b̄, c̄∥∥
F
≤ 1, and for all i ∈ {1, 2, 3, 4},

PrA,b,c

[
C

(i)
PD(A, b, c) >

214 n2d3/2

δσ2

(
log2 2

10 n2d3/2

δσ2

)]
< δ

and hence

EA,b,c
[
logC(i)

PD(A, b, c)
]
≤ 21 + 3 log(nd/σ)

59

where A is a matrix and b and c are vectors of independent Gaussian random variables of
variance σ2, σ2 ≤ 1/(nd), centered at Ā, b̄, and c̄, respectively.

3.2 Primal Condition Number

In this section, we consider problems in conic form

max cTx such that Ax ≥ 0,x ∈ C,

where C is an open convex cone. Because C is an open convex cone, 0 cannot be a feasible
solution of this program. The primal program of form (1) can be put into conic form
with the introduction of the homogenizing variable x0. Letting C = {(x, x0) : x0 > 0}, the
primal program of form (1) is feasible if and only if

[−A, b](x, x0) ≥ 0, (x, x0) ∈ C

is feasible. Similarly, the primal and dual programs of form (2) and the dual program of
form (3) can also be put into conic form. In each case the transformation into conic form
leaves the Frobenius norm unchanged. Also, a random Gaussian perturbation in the original
form maps to a random Gaussian perturbation in the conic form.

The following is a generalization of the distance to ill-posedness that we will use through-
out this section.

Definition 8 (Generalized Primal Distance to Ill-Posedness) For an open convex
cone, C, and a matrix, A, we define ρ(A,C) by

a. if Ax ≥ 0, x ∈ C is feasible, then

ρ(A,C) = sup {ε : ‖∆A‖F < ε implies (A+∆A)x ≥ 0, x ∈ C is feasible}

b. if Ax ≥ 0, x ∈ C is infeasible, then

ρ(A,C) = sup {ε : ‖∆A‖F < ε implies (A+∆A)x ≥ 0, x ∈ C is infeasible}

We note that this definition makes sense even when A is a column vector. In this case,
ρ(a,C) measures the distance to ill-posedness when we only allow perturbation to a.

The primal program of form (4) is not quite in conic form; to handle it, we need

Definition 9 (Alternate Generalized Primal Distance to Ill-Posedness) For a
non-open convex cone, C, and a matrix, A, we define ρ(A,C) by

a. if Ax ≥ 0, x �= 0, x ∈ C is feasible, then

ρ(A,C) = sup {ε : ‖∆A‖F < ε implies (A+∆A)x ≥ 0, x �= 0, x ∈ C is feasible}

b. if Ax ≥ 0, x �= 0, x ∈ C is infeasible, then

ρ(A,C) = sup {ε : ‖∆A‖F < ε implies (A+∆A)x ≥ 0, x �= 0, x ∈ C is infeasible}

60

This definition would allow us to prove the analog of lemma 12 for primal programs of
form (4). We omit the details of this variation on the arguments in the interest of simplicity.

The main result of this section is:

Lemma 12 (Primal condition number is likely low) For any open convex cone C
and a Gaussian random matrix A of variance σ2 centered at a matrix Ā satisfying

∥∥Ā∥∥
F
≤ 1,

for σ ≤ 1/√nd, we have

Pr

[
‖A‖F
ρ(A,C)

≥ 212n2d3/2

δσ2
log2

(
29n2d3/2

δσ2

)]
≤ δ.

The analysis of CP will proceed as follows: we consider the cases that the program is
feasible and infeasible separately. In section 3.2.1, we show that it is unlikely that a program
is feasible and yet can be made infeasible by a small change to its constraints (lemma 15).
In section 3.2.2, we show that it is unlikely that a program is infeasible and yet can be made
feasible by a small change to its constraints (lemma 20). In section 3.2.3, we combine these
results to show that the primal condition number is low with high probability.

The thread of argument in these sections consists of a geometric characterization of those
programs with poor condition number, and then a probabilistic argument demonstrating
that this characterization is rarely satisfied. Throughout the proofs in this section, C
will always refer to the original open cone, and a subscripted C (i.e., C0) will refer to a
modification of this cone.

The key probabilistic tool used in the analysis is lemma 13, which was proved in [BD 02],
and also in [Bal 93] and [BR 76]. We provide a proof in section 3.8.

Lemma 13 (ε-Boundaries are likely to be missed) Let K be an arbitrary convex
body, and let bdry(K, ε) denote the ε-boundary of K; that is,

bdry(K, ε) =
{
x : ∃x′ ∈K, |x− x′| ≤ ε

} \K.

Let x be a d-dimensional Gaussian random vector with variance σ2. Then,

Pr [x ∈ bdry(K, ε)] ≤ 4εd1/4

σ

In this section and the next, we use the following consequence of lemma 13 repeatedly.

Lemma 14 (Feasible likely quite feasible, single constraint) Let C0 be any convex
cone in IRd and let a be a Gaussian random vector of variance σ2. Then,

Pra [ρ(a,C0) ≤ ε] ≤
(
4εd1/4

σ

)
.

Proof: Let K be the set of a for which C0 ∩ H(a) is infeasible. Observe that ρ(a,C0)
is exactly the distance from a to the boundary of K. Since K is a convex cone, lemma 13
tells us that the probability that a has distance at most ε to the boundary of K is at most(

4εd1/4

σ

)
.

61

3.2.1 Primal number, feasible case

In this subsection, we analyze the primal condition number in the feasible case, and prove:

Lemma 15 (Feasible is likely quite feasible, all constraints) Let C be an open con-
vex cone in IRd and let A be an n-by-d Gaussian random matrix of variance σ2. Then,

Pr [(Ax ≥ 0, x ∈ C is feasible) and (ρ(A,C) ≤ ε)] ≤
(
4εnd5/4

σ

)
.

The remaining lemmas in this subsection establish a necessary geometric condition for
ρ to be small. In the proof of lemma 15 at the end of this subsection, we use lemma 14 to
show that this geometric condition is unlikely to be met.

Lemma 16 (Feasibility as a dot product) For every vector a and every unit vector p,

ρ(a,Ray (p)) =
∣∣aTp
∣∣

Proof: Since Ray (p) ∩ H(a) is feasible if and only if Ray (−p) ∩ H(a) is infeasible, it
suffices to consider the case where Ray (p) ∩ H(a) is feasible. In this case aTp ≥ 0. We
first prove that ρ(a,Ray (p)) ≥ aTp. For every vector ∆a of norm at most aTp, we have

(a+∆a)Tp = aTp+∆aTp ≥ aTp− ‖∆a‖ ≥ 0.

Thus p ∈ H(a + ∆a). As this holds for every ∆a of norm at most aTp, we have
ρ(a,Ray (p)) ≥ aTp.

To show that ρ(a,Ray (p)) ≤ aTp, note that for any ε > 0, setting ∆a = −(ε+ aTp)p
yields

(a+∆a)Tp = aTp+∆aTp = aTp− (ε+ aTp)pTp = aTp− (ε+ aTp) = −ε,

so Ray (p) ∩ H(a+∆a) is infeasible. As this holds for every ε > 0, ρ(a,Ray (p)) ≤ aTp.

Lemma 17 (Quite feasible region implies quite feasible point, single constraint)
For every a and every open convex cone C0 for which C0 ∩H(a) is feasible,

ρ(a,C0) = max
p∈C0:‖p‖=1

aTp.

Proof: The “≥” direction is obvious from lemma 16, so we concentrate on showing

ρ(a,C0) ≤ max
p∈C0:‖p‖=1

aTp.

As C0 is open, there exists a vector t such that tTx < 0 for each x ∈ C0. If a ∈ C0, then

max
p∈C0:‖p‖=1

aTp = ‖a‖ .

For every ε > 0, C0 ∩H(a− (a+ εt)) is infeasible; so ρ(a,C0) ≤ ‖a‖.
If a �∈ C0, let q be the point of C0 that is closest to a. As C0 ∩ H(a) is feasible, q is

not the origin and we can define p = q/ ‖q‖. As C0 is a cone, q is perpendicular to a− q.

62

Thus, the distance from a to q is the square root of ‖a‖2− (aTp)2, and p must be the point
of unit norm maximizing aTp.

As C0 is convex, there is a plane through q separating C0 from a and perpendicular to
the line segment a − q. Thus, every point of C0 has inner product at most zero with the
vector a− q; and hence, for every ε > 0, C0 ∩H(a− q + εt) is infeasible. To conclude the
proof, we note that ‖q‖ = aTp.

Lemma 18 (Quite feasible point for each constraint implies quite feasible point
for all constraints) If there exist vectors a1, . . . ,an and unit vectors p1, . . . ,pn ∈ C0,
C0 ⊂ IRd, such that

aTi pi ≥ ε, for all i, and
aTi pj ≥ 0, for all i and j,

then there exists a point p of unit norm, p ∈ C0, such that

aTi p ≥ ε/d, for all i.

Proof: We prove this using Helly’s theorem [GDK 63]. Let Si = {x ∈ C0 : aTi x/ ‖x‖ ≥
ε/d}. As C0 is open, there exists t such that tTx < 0, ∀x ∈ C0. Let S′

i = Si
⋂{x :

tTx = −1}. The {S′
i} have similar intersection to the {Si} in that x ∈ S′

i ⇒ x ∈ Si
and x ∈ Si ⇒ x/tTx ∈ S′

i. However, the {S′
i} are convex sets in a (d − 1)-dimensional

subspace. By Helly’s theorem, if every subcollection of d of the {S′
i} has a common point,

then the entire collection has a common point. Because the {Si} have similar intersection
to the {S′

i}, the same statement holds for the {Si}. So assume n = d.
Let p =

∑d
i=1 pi/d. Then, for each 1 ≤ j ≤ d,

aTj p = aTj

(
d∑
i=1

pi/d

)
≥ aTj

(
pj/d
) ≥ ε/d.

Moreover, p has norm at most one, so p/ ‖p‖ is a point that lies in each of S1, . . . ,Sd.
In section 3.8 we discuss how lemma 18 can also be shown using the Brunn-Minkowski

theory of convex bodies, as it was in [BD 02]. My thanks to co-author Shang-Hua Teng for
this beautiful use of Helly’s Theorem.

Lemma 19 (Quite feasible point for all constraints implies quite feasible pro-
gram) For every set of vectors a1, . . . ,an and p such that Ray (p) ∩⋂iH(ai) is feasible,

ρ([a1, . . . ,an],Ray (p)) = min
i

ρ(ai,Ray (p)).

Proof: It suffices to observe that Ray (p) ∩ ⋂iH(ai + ∆ai) is feasible if and only if
pT (ai +∆ai) ≥ 0 for all i.

We now prove the main result of this section.
Proof of Lemma 15: Let C0 = C ∩⋂iH(ai) and Ci = C ∩⋂j 	=iH(aj). Note that

{x : Ax ≥ 0, x ∈ C} = C0.

63

Let a1, . . . ,an be the columns of A. Our first step will be to show that if C0 is feasible,
then

ρ([a1, . . . ,an],C) ≤ ε/d

implies that there exists an i for which

ρ(ai,Ci) ≤ ε.

To show this, we prove the contrapositive. That is, we assume C0 is feasible and that
ρ(ai,Ci) ≥ ε for all i. Then, lemma 17 implies that there exist unit vectors p1, . . . ,pn ∈ C0

such that aTi pi ≥ ε. Applying lemma 18, we find a unit vector p ∈ C0 such that
aTi p ≥ ε/d for all i. From lemmas 16 and 19, we then compute

ρ([a1, . . . ,an],C) ≥ ρ([a1, . . . ,an],Ray (p)) = min
i

ρ(ai,Ray (p)) ≥ ε/d.

Thus, we now know

Pra1,... ,an [(Ax ≥ 0, x ∈ C is feasible) and (ρ(A,C) ≤ ε/d)]
≤ Pra1,... ,an [C0 is feasible and ∃i : ρ(ai,Ci) ≤ ε] .

To bound the latter probability, we use lemma 14, which tells us that

Prai [ρ(ai,Ci) ≤ ε and Ci is feasible] ≤
(
4εd1/4

σ

)
.

Applying a union bound and the fact that C0 feasible implies Ci is feasible, we compute

Pra1,... ,an [C0 is feasible and ∃i : ρ(ai,Ci) ≤ ε] ≤∑
i

Pra1,... ,an [C0 is feasible and ρ(ai,Ci) ≤ ε] ≤

∑
i

Pra1,... ,an [Ci is feasible and ρ(ai,Ci) ≤ ε] ≤
(
4εnd1/4

σ

)
. (3.1)

Setting ε = dε′ yields the lemma as stated.
This concludes the analysis that it is unlikely that the primal program is both feasible

and has small distance to ill-posedness. Next, we show that it is unlikely that the primal
program is both infeasible and has small distance to ill-posedness.

3.2.2 Primal number, infeasible case

The main result of this subsection is:

Lemma 20 (Infeasible is likely quite infeasible) Let C be an open convex cone in IRd

and let A be a Gaussian random matrix of variance σ2 centered at a matrix Ā satisfying∥∥Ā∥∥
F
≤ 1, where σ ≤ 1/√d. Then,

Pr [(Ax ≥ 0, x ∈ C is infeasible) and (ρ(A,C) ≤ ε)] ≤
(
360 εn2d3/2�log1.5(1/ε)�

σ2

)
.

64

To prove lemma 20, we consider adding the constraints one at a time. If the program
is infeasible in the end, then there must be some next constraint that takes it from being
feasible to being infeasible. Lemma 21 gives a sufficient geometric characterization for
the program to be quite infeasible when the next constraint is added, and in the proof of
lemma 20, we show that this characterization is met with good probability. The geometric
characterization is that the program is quite feasible before the next constraint is added
and every previously feasible point is far from being feasible for the next constraint.

Lemma 21 (The feasible to infeasible transition) Let C be an open convex cone, p
be a unit vector, p ∈ C, and a1, . . . ,ak+1 be vectors such that

aTi p ≥ α for 1 ≤ i ≤ k, and
aTk+1x ≤ −β for all x ∈ C ∩⋂ki=1H(ai), ‖x‖ = 1.

Then,

ρ(a1, . . . ,ak+1,C) ≥ min
{
α

2
,

αβ

4α+ 2 ‖ak+1‖
}
.

Proof: We will prove this by showing that for all ε satisfying

ε ≤ α/2, and (3.2)

ε <
β

4 + 2 ‖ak+1‖ /α, (3.3)

and {∆a1, . . . ,∆ak+1} satisfying ‖∆ai‖ < ε for 1 ≤ i ≤ k + 1, we have

C ∩
k+1⋂
i=1

H(ai +∆ai) is infeasible.

Assume by way of contradiction that

C ∩
k+1⋂
i=1

H(ai +∆ai) is feasible.

Then, there exists a unit vector x′ ∈ C ∩⋂k+1
i=1 H(ai +∆ai). We first show that

x′ +
ε

α
p ∈ C ∩

k⋂
i=1

H(ai).

To see this consider any i ≤ k and note that

(ai +∆ai)Tx′ ≥ 0 =⇒ aTi x′ ≥ −∆aTi x′ ≥ −‖∆ai‖
∥∥x′∥∥ ≥ −ε.

Thus,

aTi

(
x′ +

ε

α
p
)
≥ aTi x′ + aTi

ε

α
p ≥ −ε+ ε

α
α ≥ 0.

65

Also,
x′ ∈ C, p ∈ C =⇒ x′ +

ε

α
p ∈ C

Let x = x′ + ε
αp. Then x ∈ C ∩ ∩ki=1H(ai) and x has norm at most 1 + ε/α and at least

1− ε/α. To derive a contradiction, we now compute

(ak+1 +∆ak+1)Tx′ = (ak+1 +∆ak+1)T (x− (ε/α)p)
= aTk+1x+∆aTk+1x− (ε/α)aTk+1p− (ε/α)∆aTk+1p

≤ −β ‖x‖+ ‖∆ak+1‖ ‖x‖+ (ε/α) ‖ak+1‖+ (ε/α) ‖∆ak+1‖
≤ −β(1− ε/α) + ε(1 + ε/α) + (ε/α) ‖ak+1‖+ (ε2/α)
= −β(1− ε/α) + ε ((1 + ε/α) + ‖ak+1‖ /α+ ε/α)
≤ −β/2 + ε ((2 + ‖ak+1‖ /α) , by (3.2)
< 0 by (3.3).

The next two items are trivial.

Proposition 2 For positive α, β and any vector ak+1,

αβ

2α+ ‖ak+1‖ ≥ min
{

αβ

2 + ‖ak+1‖ ,
β

2 + ‖ak+1‖
}
.

Proof: For α ≥ 1, we have
αβ

2α+ ‖ak+1‖ =
β

2 + ‖ak+1‖ /α ≥
β

2 + ‖ak+1‖ ,

while for α ≤ 1 we have
αβ

2α+ ‖ak+1‖ ≥
αβ

2 + ‖ak+1‖ .

Proposition 3 If C ∩⋂ki=1H(ai) is infeasible, then

ρ ([a1, . . . ,ak],C) ≤ ρ ([a1, . . . ,an],C) .

Proof: Adding constraints cannot make it easier to change the program to make it feasible.

We now prove the main result of this section.
Proof of Lemma 20: Let a1, . . . ,an be the columns of A, let

Ck = C ∩
k⋂
i=1

H(ak),

and let Cn be the final program. Let Ek denote the event that Ck−1 is feasible and Ck
is infeasible. Using the fact that Cn infeasible implies that Ek must hold for some k and

66

proposition 3, we obtain

Pr [Cn is infeasible and ρ ([a1, . . . ,an],C) ≤ ε] ≤
n∑
k=1

Pr [Ek and ρ ([a1, . . . ,an],C) ≤ ε] ≤
n∑
k=1

Pr [Ek and ρ ([a1, . . . ,ak],C) ≤ ε] . (3.4)

If Ck is feasible, define

κ(a1, . . . ,ak) = max
p∈Ck:‖p‖=1

min
1≤i≤k

aTi p.

By equation 3.1 and lemma 16,

Pra1,... ,ak
[Ck is feasible and κ(a1, . . . ,ak) ≤ ε] ≤ 4εnd5/4

σ
(3.5)

By lemma 21 and proposition 2, Ek+1 implies

ρ ([a1, . . . ,ak+1],C) ≥ min
{
κ(a1, . . . ,ak)

2
,
κ(a1, . . . ,ak)ρ(ak+1,Ck)

4 + 2 ‖ak+1‖ ,
ρ(ak+1,Ck)
4 + 2 ‖ak+1‖

}

≥ min {κ(a1, . . . ,ak), κ(a1, . . . ,ak)ρ(ak+1,Ck), ρ(ak+1,Ck)}
4 + 2 ‖ak+1‖ (3.6)

We now proceed to bound the probability that the numerator of this fraction is small. We
first note that

κ(a1, . . . ,ak)ρ(ak+1,Ck) ≤ δ

implies that either κ(a1, . . . ,ak) ≤ δ, ρ(ak+1,Ck) ≤ δ, or there exists an l between 1 and
�log(1/δ)� for which

κ(a1, . . . ,ak) ≤ 2−l+1 and ρ(ak+1,Ck) ≤ 2lδ.

We apply lemma 14 to bound

Pr [Ek+1 and ρ(ak+1,Ck) ≤ δ] ≤ 4δd1/4

σ
,

and lemma 15 to bound

Pr [Ek+1 and κ(a1, . . . ,ak) ≤ δ] ≤ 4δnd5/4

σ
.

67

For 1 ≤ l ≤ �log(1/δ)�, we bound

Pra1,... ,ak+1

[
Ek+1 and κ(a1, . . . ,ak) ≤ 2−l+1 and ρ(ak+1,Ck) ≤ 2lδ

]
= Pra1,... ,ak

[
Ck �= ∅ and κ(a1, . . . ,ak) ≤ 2−l+1

]
·

Prak+1

[
Ck+1 = ∅ and ρ(ak+1,Ck) ≤ 2lδ | Ck �= ∅ and κ(a1, . . . ,ak) ≤ 2−l+1

]
≤ Pra1,... ,ak

[
Ck �= ∅ and κ(a1, . . . ,ak) ≤ 2−l+1

] 2l4δd1/4

σ
, by lemma 14,

≤ 2−l+14nd5/4

σ

2l4δd1/4

σ
, by equation 3.5,

=
32δnd3/2

σ2

Summing over the choice for l, we obtain

Pr [Ek+1 and min {κ(a1, . . . ,ak), κ(a1, . . . ,ak)ρ(ak+1,Ck), ρ(ak+1,Ck)} < δ]

≤ 4δnd5/4

σ
+
4δd1/4

σ
+ �log(1/δ)�32δnd

3/2

σ2

≤ δ

(
4nd3/4 + 4 + 32�log(1/δ)�nd3/2

σ2

)
, by σ ≤ 1/√d,

≤ δ

(
40�log(1/δ)�nd3/2

σ2

)
. (3.7)

On the other hand, we can bound the denominator of (3.6) by observing that ak+1 is a
Gaussian centered at a point āk+1 of norm at most 1; so, corollary 3 implies

Pr
[
4 + 2 ‖ak+1‖ ≥ 6 + 2σ

√
2d ln(e/ε)

]
≤ ε.

By applying this bound and (3.7) with δ = ε(6 + 2σ
√
2d ln(e/ε)), we obtain

(via the schema: Pr[
num

den
≤ ε] ≤ Pr[den ≥ δ

ε
] + Pr[num ≤ δ])

Pr [Ek and ρ ([a1, . . . ,ak],C) ≤ ε]

≤ ε+ ε
(
6 + 2σ

√
2d ln(e/ε)

)(40�log(1/ε(3 + σ
√
d log(e/ε)))�nd3/2

σ2

)

≤ ε+ ε
(
6 + 3
√
ln(e/ε)

)(40�log(1/ε)�nd3/2

σ2

)

≤ ε

(
360�log1.5(1/ε)�nd3/2

σ2

)

68

Plugging this in to (3.4), we get

Pr [C0 is infeasible and ρ ([a1, . . . ,an],C) ≤ ε] ≤ 360εn2d3/2�log1.5(1/ε)�
σ2

.

3.2.3 Primal number, both cases

We combine the results of sections 3.2.1 and 3.2.2 to prove lemma 12, that the primal
condition number is probably low.
Proof of Lemma 12: In lemma 15, we show that

Pr [(Ax ≥ 0, x ∈ C0 is feasible) and (ρ(A,C0) ≤ ε)] ≤
(
4εnd5/4

σ

)
,

while in lemma 20, we show

Pr [(Ax ≥ 0, x ∈ C0 is infeasible) and (ρ(A,C0) ≤ ε)] ≤
(
360ε�log1.5(1/ε)�n2d3/2

σ2

)
.

Thus,

Pr [ρ(A,C) ≤ ε] = Pr [(Ax ≥ 0, x ∈ C0 is feasible) and (ρ(A,C0) ≤ ε)]
+ Pr [(Ax ≥ 0, x ∈ C0 is infeasible) and (ρ(A,C0) ≤ ε)]

≤
(
4εnd5/4

σ

)
+

(
360ε�log1.5(1/ε)�n2d3/2

σ2

)

≤
(
364ε�log1.5(1/ε)�n2d3/2

σ2

)

Letting α = 364n
2d3/2

σ2 and ε = δ/(3α log1.5(α/δ)) yields

Pr

[
1

ρ(A,C)
>
1100 n2d3/2

δσ2
log3/2(

370 n2d3/2

δ2σ2
)

]
≤ δ/2. (3.8)

At the same time, corollary 3 tells us that

Pr
[
‖A‖F ≥ 1 + σ

√
nd 2 ln(2e/δ)

]
≤ δ/2.

The lemma now follows by applying this bound, σ ≤ 1/√nd, and (3.8), to get

Pr

[
‖A‖F
ρ(A,C)

>
(1 +
√
2 ln(2e/δ))1100 n2d3/2

δσ2
log3/2(

370 n2d3/2

δ2σ2
)

]
< δ

To derive the lemma as stated, we note

(1 +
√
2 ln(2e/δ))1100 n2d3/2

δσ2
log3/2(

370 n2d3/2

δ2σ2
) ≤ 212 n2d3/2

δ2σ2
log2(

29 n2d3/2

δ2σ2
)

69

.

3.3 Dual Condition Number

In this section, we consider linear programs of the form

ATy = c, y ≥ 0.

The dual program of form (1) and the primal program of form (3) are both of this type.
The dual program of form (4) can be handled using a slightly different argument than the
one we present. As in section 3.2, we omit the details of the modifications necessary for
form (4). We begin by defining distance to ill-posedness appropriately for the form of linear
program considered in this section:

Definition 10 (Dual Distance to Ill-Posedness) For a matrix, A, and a vector c, we
define ρ(A, c) by

a. if ATy = c, y ≥ 0 is feasible, then ρ(A, c) =

sup
{
ε : ‖∆A‖F + ‖∆c‖F < ε implies (A+∆A)Ty = c+∆c, y ≥ 0 is feasible

}
b. if ATy = c, y ≥ 0 is infeasible, then ρ(A, c) =

sup
{
ε : ‖∆A‖F + ‖∆c‖F < ε implies (A+∆A)Ty = c+∆c, y ≥ 0 is infeasible

}
The main result of this section is:

Lemma 22 (Dual condition number is likely low.) Let A and c be a Gaussian ran-
dom matrix and vector of variance σ2, σ ≤ 1/

√
nd, centered at Ā and c̄, respectively. If∥∥Ā∥∥

F
≤ 1 and ‖c̄‖ ≤ 1, then

Pr

[
‖A, c‖F
ρ(A, c)

>
1000 d1/4n1/2

εσ2
log1.5

(
200 d1/4n1/2

εσ2

)]
≤ ε.

We begin by giving several common definitions that will be useful in our analysis of the
dual condition number. We define a change of variables, and we then develop a sufficient
geometric condition for the dual condition number to be low. In lemma 25 and in the proof
of lemma 22, we show that this geometric condition is met with good probability.

Definition 11 (Cone) For a set of vectors a1, . . . ,an, let Cone (a1, . . . ,an) denote
{x : x =∑i λiai, λi ≥ 0} .

Definition 12 (Hull) For a set of vectors a1, . . . ,an, let Hull (a1, . . . ,an) denote
{x : x =∑i λiai, λi ≥ 0,

∑
i λi = 1} .

Definition 13 (Boundary of a Set) For a convex set S, let bdry(S) denote the bound-
ary of S, i.e., {x : ∀ε > 0, ∃e, ‖e‖ ≤ ε, s.t. x+ e ∈ S, x− e /∈ S} .

Definition 14 (Point-To-Set Distance) Let dist (x,S) denote the distance of x to S,
i.e., min {ε : ∃e, ‖e‖ ≤ ε, s.t. x+ e ∈ S} .

70

Note that Cone (a1, . . . ,an) is not an open cone, while Hull (a1, . . . ,an) is the stan-
dard convex hull of {a1, . . . ,an}.

We observe that there exists a solution to the system ATy = c, y ≥ 0 if and only if

c ∈ Cone (a1, . . . ,an) ,

and that for c �= 0, this holds if and only if

Ray (c) intersects Hull (a1, . . . ,an) .

The main idea we need beyond the ideas of section 3.2 is to perform an illuminating
change of variables. We set

z = (1/n)
n∑
i=1

ai, and

xi = ai − z, for i = 1 to n− 1.

For notational convenience, we let xn = an − z, although xn is not independent of
{z,x1, . . . ,xn−1}.

We can restate the condition for the linear progam to be ill-posed in these new variables:

Lemma 23 (Ill-posedness in new variables.)

ATy = c, y ≥ 0, c �= 0 is ill-posed if and only if z ∈ bdry(Ray (c)−Hull (x1, . . . ,xn)).

Proof: We observe

ATy = c, y ≥ 0 is feasible ⇐⇒ Ray (c) intersects Hull (a1, . . . ,an)
⇐⇒ Ray (c) intersects z +Hull (x1, . . . ,xn)
⇐⇒ z ∈ Ray (c)−Hull (x1, . . . ,xn) .

For c �= 0, Ray (c) − Hull (x1, . . . ,xn) is a continuous mapping from c,x1, . . . ,xn to
subsets of Euclidean space, and so for z in the set and not on the boundary, a sufficiently
small change to all the variables simultaneously will always leave z in the set, and similarly
for z not in the set and not on the boundary.

To establish the other direction, if z is on the boundary, we can just perturb z to bring
it in or out of the set. Although z,x1, . . . ,xn are determined by the a1, . . . ,an, we can
perturb the a1, . . . ,an so as to change the value of z without changing the values of any
of the x1, . . . ,xn (see the proof of lemma 24 below for more detail on why the change of
variables permits this).

The lemma is also true for c = 0, but we will not need this.
Note that Ray (c)−Hull (x1, . . . ,xn) is a convex set. The following lemma will allow

us to apply lemma 13 to determine the probability that z is near the boundary of this
convex set.

Lemma 24 (Independence of mean among new variables.) Let a1, . . . ,an be
Gaussian random vectors of variance σ2 lying in IRd. Let

z =
1
n

∑
i

ai and xi = ai − z, for 1 ≤ i ≤ n.

71

Then, z is a Gaussian random vector of variance σ2/n and is independent of x1, . . . ,xn.

Proof: As z is the average of n Gaussian random vectors of variance σ2, it is a Gaussian
random vector of variance σ2/n. We have that z is independent of x1, . . . ,xn because the
linear combination of a1, . . . ,an used to obtain z is orthogonal to the linear combinations
of a1, . . . ,an used to obtain the xis.

We proceed to apply lemma 13.

Lemma 25 (Mean is likely far from ill-posedness.) Let c and a1, . . . ,an be Gaus-
sian random vectors of variance σ2 lying in IRd. Let

z =
1
n

∑
i

ai and xi = ai − z, for 1 ≤ i ≤ n.

Then,

Pr [dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) ≤ ε] ≤ 8εd1/4n1/2

σ
.

Proof: Let c be arbitrary. By lemma 24, we can choose x1, . . . ,xn and then choose z inde-
pendently. Having chosen x1, . . . ,xn, we fix the convex body Ray (c)−Hull (x1, . . . ,xn)
and apply lemma 13. The factor of 2 arises because z must miss an ε boundary on either
side of the convex body.

Lemma 26 (Geometric condition to be far from ill-posedness in new variables.)
If

dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) > α (3.9)

and

‖∆xi‖ ≤ α/4,
‖∆z‖ ≤ α/4,

‖∆c‖ ≤ α ‖c‖
2α+ 4(‖z‖+maxi ‖xi‖) ,

then

z +∆z �∈ bdry(Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn))

Proof: Assume for the purpose of showing a contradiction that

z +∆z ∈ bdry(Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn))

Consider the case that z �∈ Ray (c)−Hull (x1, . . . ,xn). We will show that
dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) ≤ α, contradicting our lemma assumption (3.9).
Since z +∆z ∈ bdry(Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn)),

z +∆z = λ(c+∆c)−
∑
i

γi(xi +∆xi),

72

for some λ ≥ 0 and γ1, . . . , γn ≥ 0,
∑
i γi = 1. We establish an upper bound on λ by noting

that

λ =
‖z +∆z +

∑
i γi(xi +∆xi)‖

‖c+∆c‖ .

We lower bound the denominator by ‖c‖ /2 by observing that

‖∆c‖ ≤ α ‖c‖
2α+ 4(‖z‖+maxi ‖xi‖) ≤ ‖c‖ /2.

We upper bound the numerator by∥∥∥∥∥z +∆z +
∑
i

γi(xi +∆xi)

∥∥∥∥∥ ≤ ‖z‖+ α/4 +
∑
i

γi(‖xi‖+ ‖∆xi‖)

≤ ‖z‖+ α/4 + max
i
‖xi‖+ α/4

= ‖z‖+max
i
‖xi‖+ α/2.

Thus,

λ ≤ ‖z‖+maxi ‖xi‖+ α/2
‖c‖ /2

Since

z +∆z − λ∆c+
∑
i

γi∆xi = λc−
∑
i

γixi ∈ Ray (c)−Hull (x1, . . . ,xn)

We find that

dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) ≤
∥∥∥∥∥∆z − λ∆c+

∑
i

γi∆xi

∥∥∥∥∥
≤ ‖∆z‖+ λ ‖∆c‖+

∑
i

γi ‖∆xi‖

≤ α

4
+
(‖z‖+maxi ‖xi‖+ α/2

‖c‖ /2
)(

α ‖c‖
2α+ 4(‖z‖+maxi ‖xi‖)

)
+

α

4
= α.

This establishes a contradiction in the case that z �∈ Ray (c) − Hull (x1, . . . ,xn). Now
consider the case that z ∈ Ray (c)−Hull (x1, . . . ,xn). Since

z +∆z ∈ bdry(Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn))

there exists a hyperplane H passing through z +∆z and tangent to the convex set
Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn). By the assumption that
dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) > α, there is some δ0 > 0 such that, for every
δ ∈ (0, δ0), every point within α + δ of z lies within Ray (c) −Hull (x1, . . . ,xn). Choose

73

δ ∈ (0, δ0) that also satifises δ ≤ ‖z‖ + maxi ‖xi‖. Let q be a point at distance 3α
4 +

δ from z + ∆z in the direction perpendicular to H. Since dist (z, z +∆z) ≤ α
4 , and

dist (z +∆z, q) ≤ 3α
4 + δ,

q ∈ Ray (c)−Hull (x1, . . . ,xn)

At the same time,

dist (q,Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn)) >
3α
4

Because q ∈ Ray (c) −Hull (x1, . . . ,xn), there exist λ ≥ 0 and γ1, . . . , γn ≥ 0,
∑
i γi = 1

such that

q = λc−
∑
i

γixi.

We upper bound λ as before,

λ =
‖q +∑i γixi‖

‖c‖ ≤ ‖z‖+ α+ δ +maxi ‖xi‖
‖c‖ ≤ ‖z‖+maxi ‖xi‖+ α/2

‖c‖ /2
Hence

q + λ∆c−
∑
i

γi∆xi = λ(c+∆c)−
∑
i

γi(xi +∆xi)

∈ Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn)

and thus

dist (q,Ray (c+∆c)−Hull (x1 +∆x1, . . . ,xn +∆xn)) ≤
∥∥∥∥∥λ∆c−

∑
i

γi∆xi

∥∥∥∥∥
≤ λ ‖∆c‖+max

i
‖∆xi‖

≤ α/2 + α/4
≤ 3α/4

which is a contradiction. This concludes the proof of the lemma.

We now derive a consequence of lemma 26 that uses both the original and the new
variables.

Lemma 27 (Reciprocal of distance to ill-posedness.) Let c and a1, . . . ,an be vec-
tors in IRd. Let

z =
1
n

∑
i

ai and xi = ai − z, for 1 ≤ i ≤ n.

k1 = dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn)))

74

k2 = ‖c‖

Then

1
ρ(A, c)

≤ max
{
8
k1

,
4
k2

,
24maxi ‖ai‖

k1k2

}
.

Proof: By the definition of k1 and k2 and lemma 26, we can tolerate any change of
magnitude up to k1/4 in z, {xi} and any change of up to k1k2

2k1+4(‖z‖+max‖xi‖) in c without
the program becoming ill-posed. We show that this means we can tolerate any change of
up to k1/8 in ai without the program becoming ill-posed. Formally, we need to show that
if ‖∆ai‖ ≤ k1/8 for all i, then ‖∆z‖ ≤ k1/4 and ‖∆xi‖ ≤ k1/4. Since ∆z = (1/n)

∑
∆ai,

‖∆z‖ ≤ k1/8. Since ∆xi = ∆ai −∆z, ‖∆xi‖ ≤ k1/8 + k1/8 = k1/4. Thus

ρ(A, c) ≥ min
{
k1

8
,

k1k2

2k1 + 4(‖z‖+max ‖xi‖)
}

which implies
1

ρ(A, c)
≤ max

{
8
k1

,
4
k2

,
8(‖z‖+max ‖xi‖)

k1k2

}

Since z = (1/n)
∑

ai ⇒ ‖z‖ ≤ max ‖ai‖, and xi = ai − z ⇒ ‖xi‖ ≤ ‖ai‖ + ‖z‖ ≤
2max ‖ai‖, we have

1
ρ(A, c)

≤ max
{
8
k1

,
4
k2

,
24max ‖ai‖

k1k2

}
This concludes the proof.
Proof of Lemma 22: Let

z =
1
n

∑
i

ai and xi = ai − z, for 1 ≤ i ≤ n,

k1 = dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) and k2 = ‖c‖ .

We will apply the bound of lemma 27. We first lower bound min {k1, k2, k1k2}. We begin
by noting that if

min {k1, k2, k1k2} < ε,

then either

dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) < ε, (3.10)

or

‖c‖ < ε, (3.11)

or there exists some integer l, 1 ≤ l ≤ �log 1
ε �, for which

dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) < 2lε and ‖c‖ ≤ 2−l+1. (3.12)

The probabilities of events 3.10 and 3.11 will also be bounded in our analysis of event 3.12.

75

By corollary 4, for d ≥ 2, we have

Pr [‖c‖ ≤ ε] ≤ eε

σ
,

which translates to

Pr
[
‖c‖ ≤ 2−l+1

]
≤ e2−l+1

σ
,

while lemma 25 implies

Pr
[
dist (z,bdry(Ray (c)−Hull (x1, . . . ,xn))) < 2lε

]
≤ 8 · 2lεd1/4n1/2

σ
.

Thus, we compute

Pr [min {k1, k2, k1k2} < ε] ≤ 8 εd1/4n1/2

σ
+

eε

σ
+

�log 1
ε
�∑

l=1

e2−l+1

σ

8 · 2lεd1/4n1/2

σ

=
8 εd1/4n1/2

σ
+

eε

σ
+
16eεd1/4n1/2

σ2
log(

1
ε
)

≤ 55 εd1/4n1/2

σ2
log(

1
ε
).

We re-write this as

Pr

[
max {1/k1, 1/k2, 1/k1k2} > 200 d1/4n1/2

εσ2
log(

200 d1/4n1/2

εσ2
)

]
<

ε

2
.

From corollary 3, we know that

Pr
[
‖A, c‖F > 3 + σ

√
(d+ 1)n 2 ln(2e/ε)

]
<

ε

2
.

Thus,

Pr

[
‖A, c‖F
ρ(A, c)

>
200 d1/4n1/2

εσ2
log(

200 d1/4n1/2

εσ2
)(3 + σ

√
(d+ 1)n2 ln(2e/ε))

]
≤ ε.

To derive the lemma as stated, we conclude with

200 d1/4n1/2

εσ2
log(

200 d1/4n1/2

εσ2
)(3 + σ

√
(d+ 1)n 2 ln(2e/ε)) ≤

1000 d1/4n1/2

εσ2
log1.5

(
200 d1/4n1/2

εσ2

)

3.4 Combining the Primal and Dual Analyses

Our main theorem is now very easy to prove.

76

Proof of Theorem 5: Apply lemmas 22 and 12:

213n2d3/2

εσ2
log2

(
29n2d3/2

εσ2

)
+
211d1/4n1/2

εσ2
log1.5

(
28d1/4n1/2

εσ2

)

≤ 214n2d3/2

εσ2
log2

(
210n2d3/2

εσ2

)

We recall the four canonical forms for linear programs that we have discussed.

max cTx s.t. Ax ≤ b and its dual min bTy s.t. ATy = c, y ≥ 0, (1)
max cTx s.t. Ax ≤ b, x ≥ 0 and its dual min bTy s.t. ATy ≤ c, y ≥ 0 (2)
max cTx s.t. Ax = b, x ≥ 0 and its dual min bTy s.t. ATy ≤ c (3)

find x �= 0 s.t. Ax ≤ 0 and its dual find y �= 0 s.t. ATy = 0, y ≥ 0, (4)

Renegar developed efficient algorithms for both solving and estimating the condition num-
ber of programs in form (2) in [Ren 94]. Vera [Ver 96] developed efficient algorithms for
forms (1) and (3). Cucker and Peña developed algorithms for form (4) in [CP 01]. In
[FV 00], Freund and Vera give a unified approach which both efficiently estimates the con-
dition number and solves the linear programs in any of these forms. A bound on the
smoothed complexity of all of these algorithms follows from theorem 5.

3.5 Future Avenues of Investigation

We hope that smoothed analysis of algorithms provides an attractive avenue for other re-
searchers to explore the discrepancy that is sometimes observed between the worst-case
complexity and the typical performance of algorithms. We also hope that this work il-
luminates some of the potential shared interests of the numerical analysis and theoretical
computer science communities. One potential direction for future research is the application
of smoothed analysis to other problem domains, but there are several others we would also
like to highlight.

We do not address in this thesis the question of the actual distribution of condition
numbers. We would be particularly interested to hear the results of computational experi-
ments, like those of Freund and Ordoñez[FO 02], that explore the distribution of condition
numbers occurring in real-world problems.

In section 3.7, we discuss several alternative models of perturbation. We present several
negative results for the condition number under these models of perturbation, but we are not
aware of any such negative result for the simplex algorithm. It would be very intriguing if
under one of these models of relative perturbation the simplex algorithm ran in polynomial
time.

The most significant open challenge of smoothed analysis is the leap from analysis
to synthesis. At the time of this writing, I am not aware of a new algorithm that has
been proposed based on its superior performance in the smoothed complexity setting. The
discovery of a new and practically useful algorithm suggested by smoothed complexity would
be very exciting.

77

3.6 The Perceptron Algorithm

In this section we describe the perceptron algorithm, a classic algorithm from maching learn-
ing that also solves linear programming problems. The perceptron algorithm is one of a
host of “elementary” algorithms for linear programming that has a low cost per iteration,
but which requires a number of iterations polynomial in the condition number. In con-
trast, the ellipsoid method and all the interior point methods have a much higher cost per
iteration, but require a number of iterations proportional to the log of the condition num-
ber. Algorithms for linear programming with convergence rates polynomial in the condition
number have recently attracted some attention because of their ability to quickly find an
approximate solution to a large system[Bie 01].

We begin by describing the perceptron algorithm in its classic machine learning setting
and the running time analysis. We then describe how linear programs may be mapped to
inputs to the perceptron algorithm. Lastly, we point out that the analysis of the running
time shows that the perceptron algorithm requires a number of iterations polynomial in the
primal condition number.

3.6.1 Algorithm Definition and Analysis

The perceptron algorithm is a classic algorithm for solving the following machine learning
problem, finding a separating hyperplane:

Given a set of points in d-dimensional space, each labeled as “positive” or “neg-
ative”, find a separating hyperplane (a hyperplane with all positives on one side
and all negatives on the other) if one exists. That is, we want to find (w, w0)
such that for all positive points ai, we have aTi w > w0 and for all negative
points ai, we have aTi w < w0.

To run the perceptron algorithm, one first performs two standard simplifying transfor-
mations to the data. The first is to give each point a (d + 1)st coordinate with value 1,
which allows us to assume that the separating hyperplane passes through the origin. That
is, for positive points ai we rewrite the requirement aTi w > w0 as (ai, 1)T (w,−w0) > 0,
and similarly for negatives. The second transformation is to flip all negative points through
the origin and view them as positives. (I.e., replace the constraint (ai, 1)T (w,−w0) < 0
with (−ai,−1)T (w,−w0) > 0.) The problem is now reduced to (in the new variables):

Given a set of points a1,a2, . . . ,am, find a vector w such that aTi w > 0 for all
i, if one exists.

The perceptron algorithm now works as follows:

Perceptron Algorithm

1. Initialize w = 0 (the all-zero vector).

2. Pick some ai such that aTi w ≤ 0 and update w by

w ← w +
ai
‖ai‖

3. If we do not have aTi w > 0 for all i, go back to step 2.

78

While it is not hard to construct instances where the running time of this algorithm is
exponential in the dimension d, a beautiful theorem of Block and Novikoff (see Minsky and
Papert [MP 69]) upper-bounds the running time in terms of the “wiggle room” available
for a solution. Specifically, let w∗ denote the solution that maximizes the wiggle room ν

defined as ν = mini
|aT

i w∗|
‖ai‖‖w∗‖ . In other words, not only is w∗ feasible (aTi w∗ > 0 ∀i), but

every w within angle arcsin(ν) of w∗ is also feasible.

Theorem 6 (Block-Novikoff) The perceptron algorithm terminates in at most 1/ν2 it-
erations.

Note that this implies the perceptron algorithm eventually converges to a feasible solu-
tion if one exists with non-zero wiggle room. We provide a proof of the theorem here.
Proof: ([MP 69]) Let w∗ be a solution of wiggle room ν, and for convenience scale w∗

so that it is a unit vector. (Scaling does not change the value of ν.) To show convergence
within the specified number of iterations, we consider the quantities wTw∗ and ‖w‖. Notice
that wTw∗ ≤ ‖w‖ since w∗ is a unit vector. In each step, wTw∗ increases by at least ν
since (w + ai

‖ai‖)
Tw∗ = wTw∗ + aT

i w∗
‖ai‖ ≥ wTw∗ + ν. However, ‖w‖2 never increases by

more than 1 in a given step since (w+ ai
‖ai‖)

2 = w2 + 2 aT
i

‖ai‖w+ (ai
‖ai‖)

2 ≤ (w2 + 1), where

we observed that aT
i

‖ai‖w < 0 for any i we would use in an update step. Therefore, after

t steps we have wTw∗ ≥ νt and ‖w‖ ≤ √t. The observation that wTw∗ ≤ ‖w‖ implies
tν ≤ √t, and therefore t ≤ 1/ν2.

In the learning setting, the problem instance consists of points (examples), and the
solution is a hyperplane. In the linear programming setting, the problem instance consists
of hyperplanes (constraints) and the solution is a point. To transform a linear programming
feasibility problem into a separating hyperplane problem, we define the polar of a conic linear
program.

Definition 15 (Polar) For any d-dimensional space S filled with points and d-dimensional
hyperplanes through the origin, we define the polar of S to be the d-dimensional space P (S),
where, for every point p in S, we define a hyperplane pTx = 0 in P (S), and for every
hyperplane hTx = 0 in S, we define a point h in P (S).

Because the feasibility problem hTx > 0 is a cone, any feasible point x defines a feasible
ray from the origin. Thus it is fair to say P (P (S)) = S, because two distinct points in S
may map to the same hyperplane in P (S), but in this case they belonged to the same ray
in S, which makes them equivalent for our purposes. Because P (P (S)) = S, the polar is
sometimes called the geometric dual.

3.6.2 The Input Mapping

For the linear programming feasibility problem

aTi x ≤ bi ∀i

we create the conic linear program

(−ai, bi)T (x, x0) ≥ 0 ∀i
x0 > 0

79

which is also a separating hyperplane problem when viewed in the polar space. We apply the
perceptron algorithm with the modification that it tests for inequality or strict inequality
as appropriate in step 2. We now relate the wiggle room to the primal condition number.

3.6.3 Wiggle Room

Let M denote the matrix whose ith row is mi =
(−ai,bi)√
n‖(ai,bi)‖ . Then the system we are

considering is
M(x, x0) ≥ 0, (x, x0) ∈ C = {(x, x0) : x0 > 0},

where C is an open convex cone and ‖M‖F = 1. For this system,

CP =
‖M‖F
ρ(M,C)

=
1

ρ(M,C)

Since ν is implicitly defined with respect to a set of linear inequalities, let ν(M,C)
denote the wiggle room for the set of constraints defining M(x, x0) ≥ 0, (x, x0) ∈ C. Since
C is an open convex cone, there is some such set of constraints.

Claim 1 (Wiggle Room and Primal Condition Number) For
C = {(x, x0) : x0 > 0},

ν(M,C) ≤ ρ(M,C) ≤ (3d)ν(M,C)

Proof: Suppose there exists a unit vector w∗ with wiggle room ν. Then w∗ ∈ C and for
every i, ρ(mi,Ray (w∗)) ≥ ν. This implies ρ(M,Ray (w∗)) ≥ ν and hence ρ(M,C) ≥ ν.

Now suppose ρ(M,C) = η. Then there exists a unit vector w ∈ C such that
ρ(mi,Ray (w)) ≥ η/d for every i. This vector w is not too close to any constraint mi,
but it might be very close to C. To fix this, we construct w

′
= w + (0, η/2d). Since

‖w′‖ ≤ 1 + η
2d ≤ 3/2, we have w′Tmi/ ‖w′‖ ≥ 1

‖w′‖(
η
d − η

2d) ≥ η
3d and w′T (0, 1)/ ‖w′‖ ≥

1
‖w′‖(

η
2d) ≥ η

3d as well. Therefore
w′

‖w′‖ has wiggle room at least η3d .

3.6.4 Smoothed Analysis of the Perceptron Algorithm

Under the hypothesis of theorem 5 on A, b defining a linear system Ax ≤ b, σ2 ≤ 1/nd, we
have that ‖A, b‖F = O(1) with high probability. From lemma 15 we have that

ρ((A,−b),C) ≥ εσ

4nd5/4

with probability at least 1− ε, and hence

ρ(M,C) ≥ εσ

4nd5/4
=⇒ ν ≥ εσ

12nd9/4

An argument that does not use lemma 15 as a black box gives ν ≥ εσ
12nd5/4 (since in

lemma 15 we constucted a point that was this far awar from every constraint simultane-
ously), and therefore implies the following theorem:

Theorem 7 (Smoothed Complexity of the Perceptron Algorithm for Feasibility)
Under the hypothesis of theorem 5 for the linear progamming feasibility problem Ax ≤ b,

80

with probability at least 1− ε, one of the following holds
(i) the perceptron algorithm returns a feasible solution in at most 144n2d5/2

ε2σ2 iterations
(ii) the problem is infeasible

Suppose now that we seek to bound the time to optimize, not just to solve the feasibility
problem. Consider the system cTx ≥ c0, Ax ≤ b, where {c, c0} are fixed, but {A, b} are
random variables as before. Rather than considering C = {(x, x0) : x0 > 0}, consider
C ′ = {(x, x0) : cTx > cT0 x0}. Then we have that Mx ≥ 0,x ∈ C ′ has wiggle room at least
εσ

12nd5/4 if it is feasible at all. We assume that c0 is known in theorem 8 – not assuming
this would require multiplying by the time to do binary search on c0. The theorem on
optimization is:

Theorem 8 (Smoothed Complexity of the Perceptron Algorithm for Optimiza-
tion) Consider the linear progamming problem

max cTx s.t. Ax ≤ b

under the hypothesis of theorem 5 but with c, c0 fixed. Define p(co) to be the probability that
the objective value c0 is strictly achievable and the maximum is well-defined, i.e.,

p(c0) = Pr[cTx > c0 for some x s.t. Ax ≤ b and the linear program is bounded]

Then with probability at least p(c0)− ε, the perceptron algorithm run on the system

cTx > c0, Ax ≤ b

returns a feasible solution in at most 144n2d5/2

ε2σ2 iterations

To see the strength of the guarantee provided by the theorem, consider that if we
ignore the case that the objective value is unbounded, the objective value c0 is only strictly
achievable with probability p(c0). Most of the theorem is straightforward from our previous
discussion: with probability at least 1−ε, the linear program is either infeasible or has good
wiggle room, and the program is either infeasible or unboudned with probabiltiy 1− p(c0).
From this we can lower bound the probability that the program is feasible and bounded
with good wiggle room

Pr[good wiggle room and bounded] ≥
Pr[good wiggle room or infeasible]− Pr[infeasible or unbounded] ≥

(1− ε)− (1− p(c0)) = p(c0)− ε

To see why we add the curious caveat about the linear program being bounded, consider
the possibility that the perceptron algorithm returns a solution (x, x0) with x0 < 0. Then
we do not know whether the system cTx ≥ c0, Ax ≤ b is feasible, but if it is, we can
construct a solution of arbitrarily large objective value as follows: let x′ be a solution to
cTx ≥ c0, Ax ≤ b. We find that x′ + λ(x′ − x

x0
) satisfies Ax ≤ b for any positive λ, and

the objective value grows without bound as λ increases.
To illuminate why we do not simply consider the open convex cone C ′′ = C ′ ∩C, note

that C ′′ might by itself have very small wiggle room. The wiggle room is approximately
half the angle between the vectors (c,−c0) and (0, 1), which is O(‖c‖c0). This value can be
arbitrarily small independent of the other parameters we have specified.

81

3.7 Alternative Models of Perturbation

3.7.1 The Original Spielman-Teng Model

The model in [ST 01] is to start with a linear program L given by

max cTx

s.t. aTi x ≤ bi ∀i ∈ {1, . . . , n}
‖ai‖ ≤ 1 ∀i

bi ∈ {±1} ∀i

As remarked in [ST 01], any linear program can be transformed in an elementary way into
this formulation. Now let ãi = ai+σgi, where each gi is chosen independently according to
a d-dimensional Gaussian distribution of unit variance and zero mean. Then the perturbed
linear program is given by

max cTx

s.t. ãTi x ≤ bi ∀i

The details necessary to extend our analysis of the primal condition number to this model are
covered in [BD 02]. Let it suffice to say that it is easier to carry out a smoothed analysis of
the condition number in the model considered throughout the bulk of this chapter. Note also
that in the original Spielman-Teng model ‖A‖F is about

√
n, which explains the difference

by a factor of n between the running time for the perceptron algorithm given in [BD 02]
and the running time given here.

3.7.2 Zero-Preserving Perturbations

Many linear programs that are encountered in practice are sparse. We consider here the
possibility of modelling this phenomenon using zero-preserving additive perturbations. We
show that in this model it is not possible to bound the condition number by poly(n, d, 1

σ)
with probability at least 1/2.

Consider Ax ≥ 0, where
∥∥Ā∥∥

F
≤ 1 and A is centered at Ā, but only the nonzero entries

of A are Gaussian random variables of variance σ2; the rest are fixed to be equal to zero.
For ease of exposition, we will normalize

∥∥Ā∥∥
F
to be 1 at the end of this subsection. Define

the matrix

A =


 1 −ε

1 −ε
. . .




where ε is a parameter (assumed to be small), and consider the linear program Ax ≥ 0,x ∈
C where C = {x : x ≥ 0}. We have ‖A‖F ≈

√
n, while the ith constraint is exactly

xi ≥ εxi+1

82

Adding a zero-preserving additive perturbation of magnitude σ2, we find that

Pr[|ai,i − 1| ≥ δ] ≤ e−
δ2

4σ2
δ2

σ2
> 2 (3.13)

Pr[|ai,i+1 − ε| ≥ δ] ≤ e−
δ2

4σ2
δ2

σ2
> 2 (3.14)

by applying corollary 4. Setting δ = σ
√
8 logn yields that none of the events (3.13), (3.14)

happen for any i with probability at least 1/2 (by a union bound). Assuming that none of
the events occur, we have that Ax ≥ 0,x ∈ C is still feasible, but ρ(A,C) is at most(

ε+ δ

1− δ

)n
=
(
ε+ σ

√
8 log n

1− σ
√
8 log n

)n

which is exponentially small ((O(1)
n)n), for ε = 1

n and σ = 1
n2 . Normalizing so that

‖A‖F = 1 is equivalent to using σ ≈ 1
n
√
n
, which still shows the negative result.

This analysis may easily be extended to show that zero-preserving multiplicative pertur-
bations can also lead to very small wiggle room.

3.7.3 Non-Gaussian Perturbations

Suppose we wanted to model A as a uniformly distributed random variable within the ball
of radius σ′ centered at Ā. In order to extend all the results of this chapter to this model,
we just need the following lemma and easy fact:

Lemma 28 (Small Boundaries are Easily Missed, Uniform Perturbation Case)
Let g be a random variable that is uniformly distributed within the ball of radius σ′ centered
at g0, and let K be an arbitrary convex body. Then,

Pr[g ∈ bdry(K, ε)] ≤
(
εd

σ′

)

Proof: As in the proof of lemma 30, the volume of bdry(K, ε) is at most ε times the
surface area of a ball of radius σ′, which is 2(σ′)d−1πd/2

Γ(d/2) . Since the volume of a ball of radius

σ′ is 2(σ′)dπd/2

dΓ(d/2) , the ratio between these two quantities is
εd
σ′ .

As σ′ is roughly analogous to σ
√
d, this bound matches lemma 30. While the bound in

lemma 30 turns out not to be tight, lemma 28 clearly is.

Fact 3 (Bounds on the Magnitude of a Uniform Random Variable) Let g be a
random variable that is uniformly distributed within the d-dimensional ball of radius σ′

centered at the origin. Then
Pr[‖g‖ > σ′] = 0

Pr[‖g‖ ≤ cσ′] = cd

The proof of this fact is straightforward from the formula for the volume of a d-dimensional
ball. The bounds are very similar to those derived for Gaussian random variables in sec-
tion 3.8.1.

Results for this alternative model of perturbation analogous to everything developed
earlier in this chapter follow straightforwardly. Extending this theory to other models of
perturbation may be done in a similar fashion.

83

3.8 Technical Matters

The statements in this section are used in a black-box manner by the rest of the chapter.

3.8.1 A Bound on the Sum of Gaussian Random Variables

We recall that the probability density function of a Gaussian random variable is given by

µ(x) = (1/
√
2π)e−x

2/2.

A Gaussian random vector of variance σ2 is a vector where each element is a Gaussian
random variable of variance σ2. A Gaussian random matrix is defined similarly. The
probability density function of a d-dimensional Gaussian random vector of variance σ2

centered at x̄ is given by

µ(x) = (1/(σ
√
2π)d)e−‖x−x̄‖/(2σ2).

The distribution we are analyzing is the Chi-Squared distribution, and bounds of this
form are well-known. We thank DasGupta and Gupta [DG 99] for this particular derivation.

Fact 4 (Sum of Gaussians) Let X1, . . . , Xd be independent N(0, σ) random variables.
Then

Pr[
d∑
i=1

X2
i ≥ κ2] ≤ e

d
2
(1− κ2

dσ2 +ln κ2

dσ2)

Proof: For simplicity, we begin with Yi ∼ N(0, 1). A simple integration shows that if
Y ∼ N(0, 1) then E[etY

2
] = 1√

1−2t
(t < 1

2). We proceed with

Pr[
d∑
i=1

Y 2
i ≥ k] =

Pr[
d∑
i=1

Y 2
i − k ≥ 0] = (for t > 0)

Pr[et(
∑d

i=1 Y
2
i −k) ≥ 1] ≤ (by Markov’s Ineq.)

E[et(
∑d

i=1 Y
2
i −k)] =(

1
1− 2t

)d/2
e−kt ≤ (letting t =

1
2
− d

2k
)

(
k

d

)d/2
e−

k
2
+ d

2 = e
d
2
(1− k

d
+ln k

d
)

Since

Pr[
d∑
i=1

Y 2
i ≥ k] = Pr[

d∑
i=1

X2
i ≥ σ2k]

we set k = κ2

σ2 and obtain e
d
2
(1− k

d
+ln k

d
) = e

d
2
(1− κ2

dσ2 +ln κ2

dσ2) which was our desired bound.

84

Fact 5 (Alternative Sum of Gaussians) Let X1, . . . , Xd be independent N(0, σ) ran-
dom variables. Then

Pr[
d∑
i=1

X2
i ≥ cdσ2] ≤ e

d
2
(1−c+ln c) c ≥ 1

Pr[
d∑
i=1

X2
i ≤ cdσ2] ≤ e

d
2
(1−c+ln c) c ≤ 1

Proof: The first inequality is proved by setting k = cd in the last line of the proof of
fact 4. To prove the second inequality, begin the proof of fact 4 with Pr[

∑d
i=1 Y

2
i ≤ k] and

continue in the obvious manner.

Corollary 3 Let x be a d-dimensional Gaussian random vector of variance σ2 centered at
the origin. Then, for d ≥ 2 and ε ≤ 1/e2,

Pr
[
‖x‖ ≥ σ

√
d(1 + 2 ln(1/ε)

]
≤ ε

Proof: Set c = 1 + 2 ln(1/ε) in fact 5. We then compute

e
d
2
(1−c+ln c) ≤ e1−c+ln c ≤ e−2 ln 1

ε
+ln(1+2 ln 1

ε
) = εe− ln 1

ε
+ln(1+2 ln 1

ε
)

We now seek to show

e− ln 1
ε
+ln(1+2 ln 1

ε
) ≤ 1

⇔ − ln 1
ε
+ ln(1 + 2 ln

1
ε
) ≤ 0

⇔ 1 + 2 ln
1
ε
≤ 1

ε

For ε = 1/e2, the left-hand side of the last inequality is 5, while the right-hand side is greater
than 7. Taking derivatives with respect to 1/ε, we see that the right-hand side grows faster
as we increase 1/ε (decrease ε), and therefore will always be greater.

Corollary 4 Let x be a d-dimensional Gaussian random vector of variance σ2 centered at
the origin. Then, for d ≥ 2,

Pr [‖x‖ ≤ ε] ≤ eε

σ

Proof: If ε ≤ σ, set c = ε2

dσ2 in fact 5.

e
d
2
(1−c+ln c) ≤ e1−c+ln c ≤ e1+ln c =

eε2

dσ2
≤ eε

σ

If ε > σ, the statement is vacuously true.

3.8.2 An Application of the Brunn-Minkowski Theory

We state the following analogue of lemma 18 and show how it can be derived from the
Brunn-Minkowski theory of convex bodies.

85

Lemma 29 (Brunn-Minkowski) Let K be a d-dimensional convex body, and let x̄ denote
the center of mass of K, x̄ = Ex∈K [x]. Then for every w,

maxx∈K wT (x− x̄)
maxx∈K wT (x̄− x)

≤ d

Figure 3-1: Worst case K for lemma 29.

1 d

Proof: The entire proof consists of showing that figure 3-1 is the worst case for the bound
we want. Without loss of generality, let x̄ be the origin. Let K and w be fixed, and let w
be a unit vector. Consider the body K ′ that is rotationally symmetric about w and has
the same (d− 1)-dimensional volume for every cross section Kr = {x : x ∈ K,wTx = r},
i.e., vold−1(Kr) = vold−1(K ′

r). K ′ is referred to as the Schwarz rounding of K in [GW 93].
K ′ has the same mean as K, and also the same min and max as K when we consider the
projection along w, but K ′ will be easier to analyze. Denote the radius of the (d − 1)-
dimensional ball K ′

r by radius(K
′
r). That K ′ is convex follows from the Brunn-Minkowski

inequality

voln((1− λ)A+ λB)1/n ≥ (1− λ)voln(A)1/n + (λ)voln(B)1/n

where A and B are convex bodies in Rn, 0 ≤ λ ≤ 1, and + denotes the Minkoski sum.
Proofs of this inequality can be found in both [Gar 02] and [GW 93]. To see the implication
of the theorem from the inequality, letA,B be two cross sections of K, A = Kr1 , B = Kr2

and consider the cross-section K(r1+r2)/2. By convexity of K, 1
2A+ 1

2B ⊂ K(r1+r2)/2, and
therefore

vold−1(K(r1+r2)/2)
1/(d−1) ≥ 1

2
vold−1(Kr1)

1/(d−1) +
1
2
vold−1(Kr2)

1/(d−1)

This implies that radius(K ′
(r1+r2)/2

) ≥ 1
2radius(K

′
r1) +

1
2radius(K

′
r2), which yields

that K ′ is convex.
Let radius(K ′

0) = R, and let [maxwT (x− x̄)] = r0. Then radius(K ′
r) ≥ R(1− r

r0
) for

r ∈ [0, r0] by convexity. Similarly, radius(K ′
r) ≤ R(1− r

r0
) for r < 0 by convexity. Using our

assumption that the center of mass coincides with the origin, we can derive that the least
possible value for r1 = [maxwT (x̄−x)] is given by

∫ r1
r=0 r(1+

r
r0
)d−1dr =

∫ r0
r=0 r(1− r

r0
)d−1dr

which yields r1 = r0
d .

86

3.8.3 Small Boundaries are Easily Missed

Throughout this subsection, let K be an arbitrary convex body, and let bdry(K, ε) denote
the ε-boundary of K, i.e.,

bdry(K, ε) = {x : ∃x′ ∈K,
∥∥x− x′∥∥ ≤ ε} \K

Let g be chosen according to a d-dimensional Gaussian distribution with mean ḡ and vari-
ance σ2, g ∼ N(ḡ, σ).

We thank Ryan O’Donnell for directing us to this theorem by Keith Ball[Bal 93].

Theorem 9 (K. Ball) Let g denote the probability density function of g. For any convex
body K, ∫

bdry(K)
g ≤ 4d1/4

σ

Lemma 13 (restated here for convenience) is an easy corollary of theorem 9.

Lemma 13 (Small Boundaries are Easily Missed)

Pr[g ∈ bdry(K, ε)] ≤
(
4εd1/4

σ

)

Proof:

Pr[g ∈ bdry(K, ε)] =
∫ ε
ε′=0

∫
bdry(Cε′)

g ≤ 4εd1/4

σ

where Cε′ is the convex body consisting of points within distance ε′ of K.
Ryan O’Donnell also communicated to us that F. Nazarov has proved a matching lower

bound for theorem 9.
Ball’s proof uses integral geometry tools that may lie outside the repertoire of most

theoretical computer scientists. For this reason, we provide an entirely self-contained proof
below of the slightly weaker statement.

Lemma 30 (Small Boundaries are Easily Missed – Weaker Version)

Pr[g ∈ bdry(K, ε)] = O

(
εd1/2

σ

)

This weaker statement also appeared in [Bal 93] and [BR 76] (again, thanks to Ryan
O’Donnell for these pointers). On a humble note, Ball derived lemma 30 in 6 lines, while
we take two pages. The train of thought is the same, but Ball uses some properties of
Gaussians that we were unaware of when coming up with the following proof.

Before proving lemma 30, we prove fact 6, which will be useful in proving lemma 30.

Fact 6 (Surface Area of a Convex Body) Let A be a convex body in Rd, A ⊂ B.

vold−1(bdry(A)) ≤ vold−1(bdry(B))

87

Proof: Because A is convex, we can imagine transforming B into A by a series of hyper-
plane cuts, where on each such cut we throw away everything from B on one side of the
hyperplane. The surface area of B strictly decreases after each cut, until finally B equals
A.

Proof of Lemma 30: This bound is easily seen to be tight to within a factor of Θ(
√
d):

let K be a hyperplane passing through ḡ. For the proof, we divide space into thin shells
of a hypersphere (like an onion) centered at ḡ. We then argue that we are likely to land
in a shell where we are about as likely to be in any one part of the shell as any other.
Furthermore, in this shell, bdry(K, ε) can’t be more than a small fraction of the overall
volume of the shell.

Without loss of generality, let ḡ be the origin. Recall that the probability density
function of g is given by

µ(x) =
(
1/
√
2π
)d

e−‖x‖2/2

Fix γ > 0. Let SR = {x : R ≤ |x| ≤ (1 + γ
d)R} be the thin shell.

We would like to be able to argue that, if bdry(K, ε) is a small fraction of the volume
of SR, then if we condition on g landing within SR, we are unlikely to land in bdry(K, ε).
The concept of bias allows us to make this argument. Define the bias of a region X by

bias(X) =
maxx∈X µ(x)
minx∈X µ(x)

Then we can say that, for any Y ⊂ X,

Pr[g ∈ Y |g ∈ X] ≤ vol(Y)
vol(X)

· bias(X)

For SR, we calculate

bias(SR) =
e−R2/σ2

e−(1+γ/d)2R2/σ2 = e(2γ/d+γ2/d2)R2/σ2

We upper bound the probability of landing in bdry(K, ε) using

Pr[g ∈ bdry(K, ε)|g ∈ SR] ≤ vol(bdry(K, ε) ∩ SR)
vol(SR)

· bias(SR)

Let B be a ball of radius (1 + γ
d)R. Let K ′ be the convex closure of bdry(K, ε) ∩ SR.

Clearly K ′ ⊂ B. We can upper bound vol(bdry(K, ε)∩ SR) by ε · vold−1(bdry(K ′)), and
by fact 6, this is at most ε · vold−1(B). The exact formulas for the volume and surface area
of a sphere are

vol(SR) =
2((1 + γ

d)R)
dπd/2

dΓ(d/2)
− 2Rdπd/2

dΓ(d/2)

vold−1(B) =
2((1 + γ

d)R)
d−1πd/2

Γ(d/2)

which yields
vol(bdry(K, ε) ∩ SR)

vol(SR)
bias(SR) ≤

88

dε

R
· (1 +

γ
d)
d−1

(1 + γ
d)
d − 1 · e

γ
d
(1+γ/d)2(2+γ/d)R2/σ2

To complete the proof, we sum over all the possible shells SR that g might land in. This
is done in the following formula.

Pr[g ∈ bdry(K, ε)] ≤
∑

k,R=(1+ γ
d
)k

Pr[g ∈ bdry(K, ε) | g ∈ SR] Pr[g ∈ SR]

≤
∑

k,R=(1+ γ
d
)k

Pr[g ∈ SR] · dε
R
· (1 +

γ
d)
d−1

(1 + γ
d)
d − 1 · e

γ
d
(1+γ/d)2(2+γ/d)R2/σ2

≤ E{g,|g|=σ√cd}

[√
dε√
cσ
· (1 + γ

d)
d

(1 + γ
d)
d − 1 · e

γ(1+γ/d)4(2+γ/d)c

]

We use the identity
Eg[f(g)] =

∫∞
x=0 Prg[f(g) > x]dx to upper bound that last expectation. Also, let 1/γ1 =

(1+ γ
d
)d

(1+ γ
d
)d−1

and let γ2 = γ(1 + γ/d)4(1 + γ/(2d)). Then that last expectation is just
√
dε
σγ1

E[1√
c
e2γ2c]. We compute the upper bound as follows:

E[
1√
c
e2γ2c] =

∫ ∞

x=0
Pr

{g,|g|=σ√cd}
[
1√
c
e2γ2c > x]dx

=
∫ ∞

x=0
Pr[

1√
c
e2γ2c > x, c ≥ 1] + Pr[1√

c
e2γ2c > x, c < 1]dx

≤
∫
x
Pr[e2γ2c > x and c ≥ 1] + Pr[1√

c
e2γ2 > x and c < 1]dx

=
∫ ∞

x=e2γ2

Pr[e2γ2c > x]dx+
∫ ∞

x=e2γ2

Pr[
1√
c
e2γ2 > x]dx

=
∫ ∞

x=e2γ2

Pr[c >
lnx
2γ2

]dx+
∫ ∞

x=e2γ2

Pr[c <
e4γ2

x2
]dx

≤
∫ ∞

x=e2γ2

e
d
2
(1−c′+ln c′)|c′= ln x

2γ2

dx+
∫ ∞

x=e2γ2

e
d
2
(1−c′+ln c′)|

c′= e4γ2

x2

dx

≤
∫ ∞

x=e2γ2

e(1−c′+ln c′)|c′= ln x
2γ2

dx+
∫ ∞

x=e2γ2

e(1−c′+ln c′)|
c′= e4γ2

x2

dx

Where on the last step we observe that 1 − c′ + ln c′ ≤ 0 and we assume that d ≥ 2. We
now proceed to analyze the right-hand term.∫ ∞

x=e2γ2

e(1−c′+ln c′)|
c′= e4γ2

x2

dx ≤
∫ ∞

x=e2γ2

e1+ln c′ |
c′= e4γ2

x2

dx

= e

∫ ∞

x=e2γ2

e4γ2

x2
dx

= e2γ2+1

89

For the lefthand term we make the change of variables x = e2γ2α. Continuing:∫ ∞

x=e2γ2

e(1−c′+ln c′)|c′= ln x
2γ2

dx =
∫ ∞

α=1
e1−α+lnα2γ2e

2γ2αdα

= 2γ2e

∫ ∞

α=1
αe(2γ2−1)αdα

= 2γ2e

[
α

2γ2 − 1e
(2γ2−1)α − 1

(2γ2 − 1)2 e
(2γ2−1)α

]∞
α=1

(since γ2 < 1/2) = 2γ2e
2γ2

[
1

(2γ2 − 1)2 −
1

2γ2 − 1
]

Our final bound on Pr[g ∈ bdry(K, ε)] is thus

ε
√
d

σ

(
e2γ2

γ1

)(
e+

4(γ2 − γ2
2)

(2γ2 − 1)2
)

Letting γ = .1, we derive that this is at most 45ε
√
d

σ . This concludes the lemma proof.

90

Bibliography

[Adl 83] I. Adler, “The expected number of pivots needed to solve parametric lin-
ear programs and the efficiency of the self-dual simplex method,” Technical
Report, University of California at Berkeley, May 1983.

[AKS 87] I. Adler, R. M. Karp, and R. Shamir, “A simplex variant solving an m x
d linear program in O(min(m2, d2)) expected number of pivot steps,” in
Journal of Complexity, 3, 1987, pp372-387.

[AM 85] I. Adler and N. Megiddo, “A simplex algorithm whose average number of
steps is bounded between two quadratic functions of the smaller dimension,”
in Journal of the ACM, 32(4), October 1985, pp871-895.

[Agm 54] S. Agmon, “The relaxation method for linear inequalities,” in Canadian Jour-
nal of Mathematics, 6(3), 1954, pp382-392.

[Bal 93] K. Ball, “The reverse isoperimetric problem for gaussian measure,” in Dis-
crete and Computational Geometry, 10(4), 1993, pp411-420.

[Bie 01] D. Bienstock, “Potential function methods for approximately solving linear
programming problems: Theory and Practice,” Computational Optimization
Research Center (CORC) at Columbia University TR-2001-06, and Center for
Operations Research and Econometric (CORE at U. Catholique de Louvain,
Belgium) Lecture Series, ISSN-0771 3894 (2001).

[BR 76] R. Bhattacharya and R. Rao, Normal approximation and asymptotic expan-
sion, 1976, pp23-38.

[BD 02] A. Blum and J. Dunagan, “Smoothed Analysis of the Perceptron Algorithm
for Linear Programming,” In Proceedings of the 13th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2002), San Francisco, 2002, pp905-914.
Invited to appear in a special issue of the Journal of Algorithms.

[BFKV 99] A. Blum, A. Frieze, R. Kannan and S. Vempala, “A Polynomial-Time Al-
gorithm for Learning Noisy Linear Threshold Functions,” In Algorithmica,
22(1), 1999, pp35-52.

[Blu 90] L. Blum, “Lectures on a theory of computation and complexity over the reals
(or an arbitrary ring),” in Lectures in the Sciences of Complexity II, edited
by E. Jen, published by Addison-Wesley, 1990, pp1-47.

91

[Bor 77] K. H. Borgwardt, “Untersuchungen zur Azymptotik der mittleren Schrittzahl
von Simplexverfahren in der linearen Optimierung,” PhD Thesis, Universitat
Kaiserslautern, 1977.

[Bor 80] K. H. Borgwardt, “The simplex method: a probabilistic analysis,” in Algo-
rithms and Combinatorics, 1, published by Springer-Verlag, 1980.

[Chv 83] V. Chvǎtal, Linear programming, W.H. Freeman, New York, 1983.

[CEMST 93] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S. Teng, “Ap-
proximating center points with iterated radon points,” In Proceedings of the
9th ACM Symposium on Computational Geometry (SOCG ’93), San Diego,
CA, 1993, pp91-98. To appear in International Journal of Computational
Geometry & Applications.

[CP 01] F. Cucker and J. Peña, “A primal-dual algorithm for solving polyhedral conic
systems with a finite-precision machine,” Submitted to SIAM Journal on
Optimization, 2001.

[Dan 51] G. B. Dantzig, “Maximization of a linear function of variables subject to
linear inequalities,” in Activity Analysis of Production and Allocation, edited
by T. C. Koopmans, 1951, pp339-347.

[DG 99] S. Dasgupta, A. Gupta, “An elementary proof of the Johnson-Lindenstrauss
Lemma,” International Computer Science Institute, Technical Report 99-006.

[DG 92] D. L. Donoho and M. Gasko, “Breakdown properties of location estimates
based on halfspace depth and projected outlyingness,” In The Annals of
Statistics, 20(4), 1992, pp1803-1827.

[DST 02] J. Dunagan, D. Spielman and S. Teng, “Smoothed Analysis of Renegar’s
Condition Number for Linear Programming,” To appear in Proceedings of
the 7th SIAM Conference on Optimization (SIOPT 2002), Toronto, 2002.

[DV 01] J. Dunagan and S. Vempala, “Optimal Outlier Removal in High-Dimensional
Spaces,” In Proceedings of the 33rd ACM Symposium on the Theory of Com-
puting (STOC ’01), Crete, 2001, pp627-636. Invited to appear in a special
issue of The Journal of Computer and System Sciences (JCSS).

[FE 00a] R. Freund and M. Epelman, “Condition number complexity of an elemen-
tary algorithm for computing a reliable solution of a conic linear system,” in
Mathematical Programming, 88(3), 2000, pp451-485.

[FE 00b] R. Freund and M. Epelman, “Condition number complexity of an elemen-
tary algorithm for resolving a conic linear system,” Technical Report O.R.
Working Paper 319-97, MIT, 2000.

[FE 01] R. Freund and M. Epelman, “A new condition measure, pre-conditioners, and
relations between different measures of conditioning for conic linear systems,”
Submitted to SIAM Journal on Optimization, 2001.

92

[FM 00] R. Freund and S. Mizuno, “Interior point methods: Current status and future
directions,” in High Performance Optimization, edited by H. Frenk et al.,
published by Kluwer Academic Publishers, 2000, pp441-466.

[FN 01] R. Freund and M. Nuñez, “Condition-measure bounds on the behavior of
the central trajectory of a semi-definite program,” in SIAM Journal on Op-
timization, 11(3):818–836, 2001.

[FO 02] R. Freund and F. Ordoñez, “IPM Practical Performance on LPs and the
Explanatory Value of Complexity Measures,” To appear in Proceedings of
the 7th SIAM Conference on Optimization (SIOPT 2002), Toronto, 2002.

[FV 99] R. Freund and J. Vera, “On the complexity of computing estimates of condi-
tion measures of a conic linear system,” Operations Research Center Working
Paper, MIT, 1999, submitted to Mathematics of Operations Research, 1999.

[FV 00] R. Freund and J. Vera, “Condition-based complexity of convex optimization
in conic linear form via the ellipsoid algorithm,” in SIAM Journal on Opti-
mization, 10(1), 2000, pp155-176.

[Gar 02] R. J. Gardner, “The Brunn-Minkowski Inequality,” submitted for publica-
tion. Available at http://www.ac.wwu.edu/~gardner/.

[GW 93] Handbook of convex geometry, chapter 1.2, edited by P. M. Gruber, J. M.
Wills, published by Elsevier Science Publishers, 1993.

[GDK 63] B. Grunbaum L. Danzer and V. Klee, “Helly’s theorem and its relatives,” in
Convexity (Proceedings of the Symposia on Pure Mathematics 7), American
Mathematical Society, 1963, pp101-180.

[Hai 83] M. Haimovich, “The simplex algorithm is very good! : On the expected
number of pivot steps and related properties of random linear programs,”
Technical Report, Columbia University, April 1983.

[KM 72] V. Klee and G. J. Minty, “How good is the simplex algorithm?”, in Inequali-
ties - III, edited by O. Shisha, published by Academic Press, 1972, pp159-175.

[Kha 79] L. G. Khachiyan, “A Polynomial Algorithm in Linear Programming,” in Dok-
lady Akademia Nauk SSSR, 1979, pp1093-1096.

[Kar 84] N. Karmarkar, “A New Polynomial Time Algorithm for Linear Program-
ming,” in Combinatorica, 4, 1984, pp373-395.

[LKS 95] L. Lovász, R. Kannan and M. Simonovits, “Isoperimetric problems for convex
bodies and a localization lemma,” In Discrete Computational Geometry 13,
1995, pp541-559.

[LKS 97] L. Lovász, R. Kannan and M. Simonovits, “Random walks and an O∗(n5)
volume algorithm for convex bodies,” In Random Structures and Algorithms
11(1), 1997, pp1-50.

[MY 95] R. Maronna and V. Yohai, “The behaviour of the Stahel-Donoho robust
multivariate estimator,” In Journal of the American Statistical Association
90(429), pp330-341, 1995.

93

[Meg 86] N. Megiddo, “Improved asymptotic analysis of the average number os steps
performed by the self-dual simplex algorithm,” in Mathematical Program-
ming, 35, 1986, pp140-172.

[MP 69] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry, published by The MIT Press, 1969.

[Mur 80] K. G. Murty, “Computational complexity of parametric linear pgramming,”
in Mathematical Programming, 19, 1980, pp213-219.

[Ren 94] J. Renegar, “Some perturbation theory for linear programming,” in Math.
Programming, 65(1, Ser. A), 1994, pp73-91.

[Ren 95a] J. Renegar, “Incorporating condition measures into the complexity theory of
linear programming,” in SIAM J. Optim., 5(3), 1995, pp506-524.

[Ren 95b] J. Renegar, “Linear programming, complexity theory and elementary func-
tional analysis,” in Math. Programming, 70(3, Ser. A), 1995, pp279-351.

[Sma 82] S. Smale, “The problem of the average speed of the simplex method,” in Pro-
ceedings of the 11th International Symposium on Mathematical programming,
August 1982, pp530-539.

[Sma 83] S. Smale, “On the average number of steps in the simplex method of linear
programming,” in Mathematical Programming, 27, 1983, pp241-262.

[ST 01] D. Spielman and S. Teng, “Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time,” In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing (STOC ’01), 2001, pp296-305.
Available at http://math.mit.edu/∼spielman/SmoothedAnalysis/

[ST 02] D. Spielman and S. Teng, “Models and applications of smoothed analysis,”
in submission.

[Tod 86] M. J. Todd, “Polynomial expected behavior of a pivoting algorithm for lin-
ear complementarity and linear programming problems,” in Mathematical
Programming, 35, 1986, pp173-192.

[Tod 91] M. J. Todd, “Probabilistic models for linear programming,” in Mathematics
of Operations Research, 16(4), 1991, pp671-693.

[Ver 96] J. Vera, “Ill-posedness and the complexity of deciding existence of solutions
to linear programs,” in SIAM Journal on Optimization, 6(3), 1996.

94

