Smoothed Analysis of Renegar’s Condition Number
for Linear Programming

John Dunagan? Daniel A. Spielman Shang-Hua Teng *
Department of Mathematics Akamai Technologies Inc. and
Massachusetts Institute of Technology Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

For any linear program, we show that a slight random relative perturbation of that linear program
has small condition number with high probability. Following [ST01], we call this smoothed analysis
of the condition number. Part of our main result is that the expectation of the log of the condition
number of any appropriately scaled linear program subject to a Gaussian perturbation of variance o2
is at most O(lognd/o) with high probability. Since the condition number bounds the running time
of many algorithms for convex programming, this may explain their observed fast convergence.

1 Introduction

Condition numbers are ubiquitous in numerical analysis and scientific computing. For many computa-
tional tasks with matrices, the ratio of the maximum and minimum eigenvalues of the matrix is a good
condition number. For other tasks, such as solving a discretized partial differential equation for given
boundary conditions, a different condition number may be defined. A condition number typically has
two uses,

1. to estimate the sensitivity of the problem’s answer to error in the input, and

2. to bound the number of iterations required by an iterative method to achieve a given degree of
accuracy.

Analysis of algorithms using condition numbers may be interpreted as a parameterized worst-case com-
plexity analysis. For many iterative methods, the maximum number of iterations is bounded by some
function of the condition number, although the actual number of iterations may be less. Additionally, the
condition number is typically bounded by some function of the input size, where the input size includes
both the number of parameters and the bit size required to represent these parameters, and so condition
number bounds typically imply worst-case complexity bounds. Thus condition number is a refinement of
input size as a measure of problem difficulty.

Another reason for the study of condition numbers is that:

*Supported in part by NSF Career Award CCR-9875024. jdunagan®@mit.edu

fPartially supported by an Alfred P. Sloan Foundation Fellowship, and NSF grant CCR-0112487. School of Science.
spielman@math.mit.edu

fPartially suppoted by an Alfred P. Sloan Foundation Fellowship, and NSF grants CCR-9972532, and CCR-0112487.
steng@akamai.com

Numerical analysis is the study of algorithms for the problems of continuous mathematics.!

For a continuous input domain, it may be unnatural to discretize the input in the problem definition.
Condition numbers are well-defined for arbitrary real-valued inputs, where measuring the input size in
bits may not be possible. The fields of numerical analysis and scientific computing consider such problems
and inputs, and condition numbers have been a pervasive underpinning of research in these fields.

Renegar [Ren94] introduced a condition number for linear programs, which we refer to as Renegar’s
condition number. In this work, he suggested that the study of condition numbers for linear programming
was a natural outgrowth of the central role iterative solvers, particularly interior point methods, had
assumed in the study of algorithms for convex programming. A large body of further work, detailed
below, has developed on bounding the number of iterations required to solve a given linear program as a
function of the condition number. This body of work includes both new bounds on old methods and the
development of new algorithms.

Our work addresses the question of “what are likely values for the condition number?” In particular, for a
very natural model of noise in the input data, we show that the condition number is likely to be low. This
addresses a question outside the scope of previous work on the condition number for linear programs.
The body of work on how condition number influences running time is an extensive foundation, and we
hope to build another layer underneath, on how noisy data leads to bounded condition number.

Spielman and Teng proposed the smoothed complexity model in [STO1]. In this work, they showed that
for an arbitrary linear program, a small random relative perturbation of that program is solved by the
simplex algorithm (with the shadow vertex pivot rule) in polynomial time with very high probability.
Blum and Dunagan proved a similar guarantee for the perceptron algorithm in [BD02].

Spielman and Teng expressed the hope in [STO01] that their result might explain the observed good
performance of the simplex algorithm in practice: if your linear program is defined by a constraint
matrix drawn from noisy data, it will probably be one that is easily solved by the simplex algorithm.

The smoothed complexity model seeks to interpolate between worst-case and average-case complexity
analysis. By letting the size of the random perturbation to the data (i.e., the variance of the noise)
become large, one obtains the traditional average-case complexity measure. By letting the size of the
random perturbation go to zero, one obtains the traditional worst-case complexity measure. In between,
one obtains new theoretical results that may also be practically meaningful.

The examples given above and the work in this paper pertain to the smoothed analysis of algorithms for
linear programming. In this paper, we use a two-step approach:

1. Bound the running time of an algorithm in terms of a condition number.

2. Perform a smoothed analysis of this condition number.

Step 1. has already been done (see subsection 1.1). Our main theorem accomplishes step 2.

We do not wish to give the impression that smoothed analysis is only meaningful for linear programming,
or even convex optimization problems. Recall that different problems (matrix inversion, solving a partial
differential equation, etc.) have different condition numbers. Typically these condition numbers are
defined to be (for any given problem instance) the sensitivity of the output to change in the input. Many
of these condition numbers have the property that the condition number is low if the smallest relative
change to the input data necessary for the problem to be ill-posed is large. (Loosely speaking, a problem
instance is ill-posed if an arbitrarily small further change to the input data may yield an arbitrarily
large change in the answer. The linear programming condition number we consider here is defined to

1Lloyd Trefethen, November 1992 SIAM News.

be the distance to ill-posedness, and can then be shown to bound the sensitivity of the output due to
change in the input.) For such condition numbers it may be the case that, from any initial instance, a
small random perturbation to that instance is quite likely to yield a new instance that is not too close
to ill-posedness. One exciting aspect of [ST01, BD02] is that they show the simplex algorithm and the
perceptron algorithm both fit into this general framework. This paper shows the same thing for the
linear programming condition number. This phenomenon may be very common (the condition number
for matrix inverion is addressed in [ST]).

To give a preview of our results, we state a rough version of our main theorem without constants or
logarithmic factors.

Statement 1 (Smoothed Complexity of Renegar’s Condition Number) For an arbitrary linear
program defined by an appropriately scaled n-by-d constraint matriz subject to a Gaussian perturbation
of variance o2, with probability at least 1 — § over the random perturbation, Renegar’s condition number
C satisfies

~ n2d?

020(025>

where f = O(g) denotes f = O(g logo(l) g). A precise version of this statement is theorem 1.4.1.

As an example of what kind of conclusion we derive on the overall performance of algorithms, we mention
that a particular interior point method [FMO00] only requires O(v/n + dIn(C/¢)) iterations to come within
€ of the optimal solution, and each iteration requires only an approximate matrix inversion computable in
O((n + d)*®) time. Thus the smoothed complexity is O((n + d)3In(nd/(c¢))) for this particular method
to come within € of the optimal solution.

1.1 Condition number based linear programming

Since Renegar’s initial papers [Ren94, Ren95a, Ren95b] on condition numbers for linear programs, there
has been a large body of subsequent work. The running time of a number of algorithms for optimization
has been analyzed in terms of their dependence on the condition number [FNO01, FV00]. The notion of
condition number has even inspired new algorithms for optimization [FE00a, FE00b]. Additionally, some
variants of Renegar’s original condition number have also been studied [FE01].

Part of the reason for the volume of work is that every linear programming formulation requires a separate
condition number analysis. This point is made by [Ren94, Ren95a, Ren95b, Ver96, CP01] in their work
developing interior point methods that have good dependence on the condition number. In addition
to bounding the time necessary to optimize in terms of the condition number, there has been work on
quickly estimating the condition number [FV99], a well-known question for the condition numbers of
other problems.

The notion of condition number for linear programs has been extended to semi-definite programs [FNO1],
but we will not elaborate further on this topic here.

1.2 Notation

Throughout this paper we use the notational convention that

e lower case letters such as a and « denote scalars,

e bold lower case letters such as a and b denote vectors,

e capital letters such as A denote matrices, and

e bold capital letters such as C' denote convex sets.

If ay,... ,a, are column vectors, we let [a4, ... ,a,] denote the matrix whose columns are the a;s.

For a vector a, we let ||a|| denote the standard Euclidean norm of the vector. We will make frequent use
of the Frobenius norm of a matrix, || Al », which is the square root of the sum of squares of the entries in
the matrix. We extend this notation to let ||A, al|, denote the square root of the sum of squares of the
entries in A and a. Different choices of norm are possible; we use the Frobenius norm throughout this
chapter. The following proposition relates several common choices of norm:

Proposition 1.2.1 (Choice of norm) For an n-by-d matriz A,

Al

Vidn

1A
— < llAllop < lAlp,

d <
[[Ax]]
[]]

where ||Al|,p denotes the operator norm of A, max,.g S

< Al < 1Allp, and

We also make use of the following definitions:
Definition 1.2.2 (Ray) For a vector p, let Ray (p) denote {ap : a > 0}.

Definition 1.2.3 (Open convex cone) An open convex cone is a conver set C' such that for allx € C
and all a > 0, ax € C, and there exists a vector t such that t"a < 0 for all x € C.

Warning 1.2.4 (Open convex cone?) An open convex cone cannot contain the origin, and is not
necessarily open in the topological sense.

Definition 1.2.5 (Positive half-space) For a vector a we let H(a) denote the half-space of points with
non-negative inner product with a.

For example R? and H(z) are not open convex cones, while {x : o > 0} and Ray (p) are open convex
cones.

These definitions enable us to express the feasible @ for the linear program
Ax >0and z € C

as

cn ﬁ H(ai),

=1

where a1, ... ,a, are the rows of A. Throughout this chapter, we will call a set feasible if it is non-empty,
and infeasible if it is empty. Thus, we say that C N[\, H(a;) is feasible if the corresponding linear
program is feasible.

1.3 Definition of condition number for linear programming

For a feasible linear program of the form,
max c'x st. Ax<b (1)

we follow Renegar [Ren94, Ren95a, Ren95b] in defining the primal condition number, C'p, of the program
to be the normalized reciprocal of the distance to ill-posedness. A program is ill-posed if the program
can be made both feasible and infeasible by arbitrarily small changes to the pair (A, b). The distance to
ill-posedness of the pair (A, b) is the distance to the set of ill-posed programs under the Frobenius norm.
We similarly define the dual condition number, Cp, to be the normalized reciprocal of the distance to
ill-posedness of the dual program. The condition number, C'pp, is the maximum of Cp and Cp.

We can equivalently define the condition number without introducing the concept of ill-posedness. For
programs of form (1), define C’I(;l)(A, b) by

Definition 1.3.1 (Primal Distance to Ill-Posedness)
(a) if Ax < b is feasible,
CY(A,b) = ||A, b /sup {5 : [|AA, Ab|| . < & implies (A + AA)x < (b+ Ab) is feasible},
(b) if Ax < b is infeasible,

CY(A,b) = ||A,b|| . /sup {0 : [|AA, Ab|| , < & implies (A + AA)x < (b+ Ab) is infeasible}

The dual of a program of form (1) is
min b’y st. ATy=e¢, y>o0,

and we define the dual condition number, C’g) (A, ¢), analogously.

Any linear program may be expressed in form (1); however, transformations among linear programming
formulations do not in general (and commonly do not) preserve condition number [Ren95a]. We will
therefore have to define different condition numbers for each normal form we consider. For linear programs
with canonical forms:

max c'x st. Az <b, >0 andits dual min bTy s.t. ATy <c,y>0 (2)
max ¢’z st. Az =b, £ >0 and its dual min bTy st. ATy <e (3)
findx #0s.t. Az <0 anditsdual findy#0st. ATy=0,y>0 (4)

we define their condition numbers, 01(322,, 01(332, and C'I(;%, analogously. We follow the convention that 0 is
not considered a feasible solution to (4).

As we mentioned previously, the condition numbers for numerous other problems (i.e., matrix inversion)
are defined as the sensitivity of the output to perturbations in the input, and then shown to be equivalent
to the distance to ill-posedness. Renegar inverts this scheme by defining the condition number for linear
programming to be distance to ill-posedness, and then showing that the condition number does bound
the sensitivity of the output to perturbations in the input [Ren94, Ren95a].

1.4 Smoothed analysis of the condition number

Following [STO01], we perform a smoothed analysis of these condition numbers. That is, we bound the
distributions of these condition numbers for arbitrary programs under slight perturbations. We then
derive bounds on the expectations of the logarithms of the condition numbers in terms of the size of the
program and the magnitude of the perturbation.

For a linear program specified by (4, b,¢), we consider the condition number of the program specified
by (A,b,c), where A, b, and ¢ are a Gaussian random matrix and vectors of variance o2 centered at
A, b and ¢ respectively. As the condition numbers are unchanged by multiplying all the data by a
constant, we assume without loss of generality that in each input form the Frobenius norm of the data is
at most 1. This also provides a scaling of the program so that ¢ measures the relative size of the random

perturbation. For completeness, we recall needed facts about Gaussian random variables in section A.

The following is the principal theorem of this chapter:

Theorem 1.4.1 (Smoo_tl}ed Complexity of Renegar’s Condition Number) For every
A, b, and € such that ||A,b,é||F <1, and for all i € {1,2,3,4},

. 914 2 73/2 910 ,273/2
PrA,b,c [CI(D)D(Avbv c) > 502 (10g2 502)] < 90

and hence
Eipe|lgClh(Ab,c)] < 21+ 3log(nd/o)

where A is a matriz and b and ¢ are vectors of independent Gaussian random variables of variance o2,

02 < 1/(nd), centered at A, b, and ¢, respectively.

2 Primal Condition Number

In this section, we consider problems in conic form
max ¢’ such that Az > 0,z € C,

where C' is an open convex cone. Because C' is an open convex cone, 0 cannot be a feasible solution of
this program. The primal program of form (1) can be put into conic form with the introduction of the
homogenizing variable xg. Letting C' = {(x,x¢) : ©o > 0}, the primal program of form (1) is feasible if
and only if

[—A,b](x,20) >0, (x,x0) € C

is feasible. Similarly, the primal and dual programs of form (2) and the dual program of form (3) can
also be put into conic form. In each case the transformation into conic form leaves the Frobenius norm
unchanged. Also, a random Gaussian perturbation in the original form maps to a random Gaussian
perturbation in the conic form.

The following is a generalization of the distance to ill-posedness that we will use throughout this section.

Definition 2.0.2 (Generalized primal distance to ill-posedness) For an open convex
cone, C, and a matriz, A, we define p(A,C) by

a. if A& >0, x € C is feasible, then

p(A,C) =sup{e: ||AA| < e implies (A+ AA)x > 0, x € C is feasible}

b. if Ax > 0, = € C is infeasible, then

p(A,C) =sup{e: ||AA| < e implies (A+ AA)x > 0, x € C is infeasible}

We note that this definition makes sense even when A is a column vector. In this case, p(a, C) measures
the distance to ill-posedness when we only allow perturbation to a.

The primal program of form (4) is not quite in conic form; to handle it, we need

Definition 2.0.3 (Alternate generalized primal distance to ill-posedness) For a
non-open convex cone, C, and a matriz, A, we define p(A,C) by

a. if Az >0, x #0, x € C is feasible, then
p(A,C) =sup{e: [|[AAlp < e implies (A+ AA)x >0, € # 0, x € C is feasible}
b. if Az >0, x £ 0, x € C is infeasible, then
p(A,C) =sup{e: ||AA| < e implies (A+ AA)x >0, x #0, x € C is infeasible}

This definition would allow us to prove the analog of lemma 2.0.4 for primal programs of form (4). We
omit the details of this variation on the arguments in the interest of simplicity.

The main result of this section is:

Lemma 2.0.4 (Primal condition number is likely low) For any open convex cone C
and a Gaussian random matriz A of variance o centered at a matriz A satisfying HAHF <1, for

o < 1/v/nd, we have

Pr

HAHF 212n2d3/2) 29n2d3/2
H(A,C) = oz 18 | T2 S

The analysis of Cp will proceed as follows: we consider the cases that the program is feasible and
infeasible separately. In section 2.1, we show that it is unlikely that a program is feasible and yet can
be made infeasible by a small change to its constraints (lemma 2.1.1). In section 2.2, we show that it is
unlikely that a program is infeasible and yet can be made feasible by a small change to its constraints
(lemma 2.2.1). In section 2.3, we combine these results to show that the primal condition number is low
with high probability.

The thread of argument in these sections consists of a geometric characterization of those programs with
poor condition number, and then a probabilistic argument demonstrating that this characterization is
rarely satisfied. Throughout the proofs in this section, C will always refer to the original open cone, and
a subscripted C' (i.e., Cy) will refer to a modification of this cone.

The key probabilistic tool used in the analysis is lemma 2.0.5, which was proved in [Bal93]. A slightly
weaker version of this lemma was proved in [BD02], and also in [BR76].

Lemma 2.0.5 (e-Boundaries are likely to be missed) Let K be an arbitrary convex
body, and let bdry (K, €) denote the e-boundary of K; that is,

bdry(K,e) ={z:3x' e K,|lz —z'| < ¢} \ K.
Let x be a d-dimensional Gaussian random vector with variance o2. Then,

ded /4
o

Pr [z € bdry(K,¢)] <

In this section and the next, we use the following consequence of lemma 2.0.5 repeatedly.

Lemma 2.0.6 (Feasible likely quite feasible, single constraint) Let Cy be any convex cone in R?
and let a be a Gaussian random vector of variance 0. Then,

ded /4
o) '

Prapla, Co) < d < (

Proof: Let K be the set of a for which Cy N H(a) is infeasible. Observe that p(a, Cy) is exactly the
distance from a to the boundary of K. Since K is a convex cone, lemma 2.0.5 tells us that the probability

that a has distance at most € to the boundary of K is at most (#). O

2.1 Primal number, feasible case
In this subsection, we analyze the primal condition number in the feasible case, and prove:

Lemma 2.1.1 (Feasible is likely quite feasible, all constraints) Let C be an open convex cone in
R? and let A be an n-by-d Gaussian random matriz of variance 0. Then,

, ‘ dend®/*
Pr [(Az > 0, z € C is feasible) and (p(A,C) <¢€)] < .

g

The remaining lemmas in this subsection establish a necessary geometric condition for p to be small. In
the proof of lemma 2.1.1 at the end of this subsection, we use lemma 2.0.6 to show that this geometric
condition is unlikely to be met.

Lemma 2.1.2 (Feasibility as a dot product) For every vector a and every unit vector p,
p(a,Ray (p)) = |a”p|

Proof: Since Ray (p) N'H(a) is feasible if and only if Ray (—p) NH(a) is infeasible, it suffices to consider
the case where Ray (p)N'H(a) is feasible. In this case a’p > 0. We first prove that p(a, Ray (p)) > a’p.
For every vector Aa of norm at most a’'p, we have

(a+Aa)"p=a"p+Aa"p>a’p—|Aal >0.
Thus p € H(a + Aa). As this holds for every Aa of norm at most a’p, we have p(a, Ray (p)) > a’p.
To show that p(a, Ray (p)) < a”p, note that for any € > 0, setting Aa = —(e + a’p)p yields
(a+Aa)'p=a"p+Aa"p=a"p—(c+a’p)p'p=a’p—(c+a’p) = —¢

so Ray (p) N H(a + Aa) is infeasible. As this holds for every € > 0, p(a, Ray (p)) < a’p. O

Lemma 2.1.3 (Quite feasible region implies quite feasible point, single constraint) For every

a and every open convex cone Cq for which Co N'H(a) is feasible,
pla,Co) = max a’p.
peCo:|p|=1

Proof: The “>” direction is obvious from lemma 2.1.2, so we concentrate on showing

p(a,Co) < max a'p.
peClo:|p|=1

As C is open, there exists a vector t such that t'a < 0 for each © € Cy. If a € Cy, then

T
max a p=|al.
peClo:p|=1

For every € > 0, Cy NH(a — (a + €t)) is infeasible; so p(a, Co) < |al|.

If a & C), let g be the point of Cy that is closest to a. As CyNH(a) is feasible, g is not the origin and
we can define p = q/||q||. As C) is a cone, q is perpendicular to @ — q. Thus, the distance from a to g
is the square root of HaH2 — (aTp)?, and p must be the point of unit norm maximizing a”p.

As C| is convex, there is a plane through g separating C| from a and perpendicular to the line segment
a — q. Thus, every point of Cy has inner product at most zero with the vector a — q; and hence, for
every € > 0, Co NH(a — q + et) is infeasible. To conclude the proof, we note that ||q|| = aTp. O

Lemma 2.1.4 (Quite feasible point for each constraint implies quite feasible point for all
constraints) If there exist vectors ai,... ,a, and unit vectors p,...,p, € Co, Co C R?, such that

alp, > e, foralli, and

aiij > 0, foralli and j,
then there exists a point p of unit norm, p € Cy, such that

alp>e/d, for alli.

Proof: We prove this using Helly’s theorem [LDK63]. Let S; = {x € Cq : al'z/|z| > ¢/d}. As Cy
is open, there exists ¢ such that t'x < 0, V& € Cy. Let S} = S;N{z : t'z = —1}. The {8} have
similar intersection to the {S;} in that * € S} = ¢ € S; and « € S; = z/t'x € S. However, the {S}}
are convex sets in a (d — 1)-dimensional subspace. By Helly’s theorem, if every subcollection of d of the

{S’} has a common point, then the entire collection has a common point. Because the {S;} have similar
intersection to the {S;}, the same statement holds for the {S;}. So assume n = d.

Let p= Z?zl p;/d. Then, for each 1 < j < d,

d
ajp=aj (Zpi/d> > aj (p;/d) > ¢/d.
i=1
Moreover, p has norm at most one, so p/ ||p|| is a point that lies in each of Sy,...,Sq. O

Lemma 2.1.5 (Quite feasible point for all constraints implies quite feasible program) For
every set of vectors ai, ... ,a, and p such that Ray (p) N, H(a;) is feasible,

p(lai;- .. ;aq], Ray (p)) = minp(a;, Ray (p)).

Proof: It suffices to observe that Ray (p) N[0, H(a; + Aa;) is feasible if and only if p”(a; + Aa;) > 0
for all 4. O

We now prove the main result of this section.

Proof of Lemma 2.1.1 Let Co = C'N(); H(a;) and C; = C'N();,, H(a;). Note that
{z: Az >0, z € C} =C,.
Let ay,... ,a, be the columns of A. Our first step will be to show that if C is feasible, then
o(lai,...,a,],C) <e/d
implies that there exists an ¢ for which
pla;, C;) <e.

To show this, we prove the contrapositive. That is, we assume Cj is feasible and that p(a;,C;) > €
for all 4. Then, lemma 2.1.3 implies that there exist unit vectors py,...,p, € Cq such that al'p, > e.
Applying lemma 2.1.4, we find a unit vector p € C such that

alp > ¢/d for all i. From lemmas 2.1.2 and 2.1.5, we then compute

p(la1,...,a,],C) > p(lay,... ,a,],Ray (p)) = miinp(ai,Ray (p)) > €/d.

Thus, we now know

Prg,. . a, [(Az >0, z € C is feasible) and (p(4,C) < ¢/d)]
< Prq,.. . a, |[Co is feasible and Ji : p(a;, C;) < €.

To bound the latter probability, we use lemma 2.0.6, which tells us that

4ed'/4
Prg, [p(ai, C;) < € and C; is feasible] < () .
ag

Applying a union bound and the fact that C feasible implies C; is feasible, we compute

Prg,. . a, [Co is feasible and 3i : p(a;, C;) < ¢
ZPral,... ., [Co is feasible and p(a;,C;) <¢ <

IN

4 1/4
ZPrah,,_ﬂn [C; is feasible and p(a;, C;) <€ < (end > . (1)

Setting € = de’ yields the lemma as stated. (I

This concludes the analysis that it is unlikely that the primal program is both feasible and has small
distance to ill-posedness. Next, we show that it is unlikely that the primal program is both infeasible
and has small distance to ill-posedness.

2.2 Primal number, infeasible case

The main result of this subsection is:

10

Lemma 2.2.1 (Infeasible is likely quite infeasible) Let C be an open conver cone in R® and let
A be a Gaussian random matriz of variance o2 centered at a matriz A satisfying HAHF < 1, where

o< 1/\/3 Then,

Pr[(Ax >0, x € C is infeasible) and (p(A,C) <e¢)] <

(360 en’d*/” ﬂogl'5(1/e)1> .

o2

To prove lemma 2.2.1, we consider adding the constraints one at a time. If the program is infeasible in
the end, then there must be some next constraint that takes it from being feasible to being infeasible.
Lemma 2.2.2 gives a sufficient geometric characterization for the program to be quite infeasible when the
next constraint is added, and in the proof of lemma 2.2.1, we show that this characterization is met with
good probability. The geometric characterization is that the program is quite feasible before the next
constraint is added and every previously feasible point is far from being feasible for the next constraint.

Lemma 2.2.2 (The feasible to infeasible transition) Let C be an open convex cone, p be a unit
vector, p € C, and a1, ... a1 be vectors such that
aiTp > aforl1<i<k, and

al,x < —BforalzeCn ﬂle H(a;), ||z|| =1.

Then,

« af
C) 2ming o, D — ¢
plai, ..., aki1,)mm{Q 4Oz—|-2||ak+1|}

Proof: We will prove this by showing that for all € satisfying

e < «a/2, and (2)
5
D — 3
T+ 2arnl /o ¥
and {Aay,...,Aaps1} satisfying ||Aa;|| < e for 1 <i<k+ 1, we have
k+1
Cn m H(a; + Aa;) is infeasible.
i=1

Assume by way of contradiction that

k41
cn ﬂ H(a; + Aa;) is feasible.
i=1

Then, there exists a unit vector ' € C' N ﬂfill H(a; + Aa;). We first show that
. k
'+ SPE cn QH(ai).
i=

To see this consider any ¢ < k and note that

(a; +Aa))'2' >0 = al'z' > -Aalz’ > —||Aai| ||| > —e.

11

Thus,
(., € T,/ T € €
a; (' +—-p)>a;x +a; —p> —€e+ —a>0.
« « «

Also,
£eC, peC = w’+£p€C
«

Let ¢ = @’ + £p. Then @ € C NNF_;H(a;) and = has norm at most 1 + ¢/a and at least 1 — /. To
derive a contradiction, we now compute

Yax! = (apyr + Aagsr)' (x — (¢/a)p)
= afﬂw + Aag_Hm - (e/a)af_i_lp - (e/a)Aa£+1p
=Bl + [Aak | [|=] + (¢/a) larta] + (¢/a) [Aar]
—B(L —e/a) + e(1+e/a) + (¢/a) |ag]| + (/)
B —e/a)+e((1+e€/a)+ lapa| /a+e/a)
=B/2+ (2 + [[art1] /o), by (2)
0 by (3).

(ars1 + Aakqr

(I VANVAN

AN

The next two items are trivial.

Proposition 2.2.3 For positive o, 3 and any vector ag41,

of : { of g }
min .

- > ,
2a + [lagp]l 2+ [lapall” 2 + [lagta]

Proof: For a > 1, we have

af 8 B

= > ,
2a +[lagpi] 2+ [lagall/a T 24 flap]

while for o« < 1 we have

af af

> .
20+ Jaraal] = 2+ farpl

Proposition 2.2.4 If C' N ﬂle H(a;) is infeasible, then

p([alv"- aak]vc) Sp([a’lv"' aan]vc)'

Proof: Adding constraints cannot make it easier to change the program to make it feasible. O
We now prove the main result of this section.

Proof of Lemma 2.2.1 Let aq,...,a, be the columns of A, let

k
Cr=Cn () Hlaw),

=1

12

and let C,, be the final program. Let Fj denote the event that Cj_; is feasible and C; is infeasible.
Using the fact that C,, infeasible implies that Fj must hold for some k and proposition 2.2.4, we obtain

Pr [C,, is infeasible and p ([a1,... ,a,],C) <¢ <

n

> Pr(Byand p(lay, ... ,a,],C) < <
k=1
n
> Pr[E; and p([as, ... ,ax],C) <. (4)
k=1
If C', is feasible, define
T
k(ai,...,ar) = max min a; p.
(a1 A R
By equation 1 and lemma 2.1.2,
4 d5/4
Pra,. . a, [Ck is feasible and (a1, ... ,ar) < € < (5)
o
By lemma 2.2.2 and proposition 2.2.3, Ej; implies
. [&(ay,...,ax) slay,...,ag)p(ags1,Cr) plaki1, Cy) }
a,...,a ,C) > min , ,
plar: el) L T 2facnl 4t 2fak]
S min {k(a1,...,ar), k(a,...,ar)plars1,Ck), plag+1,Cr)} (©)
- 4+ 2]lag |

We now proceed to bound the probability that the numerator of this fraction is small. We first note that

k(ay,...,ar)p(agt1,Cr) <6

implies that either k(aq,... ,ax) <0, p(art+1,Cr) < 4, or there exists an [between 1 and [log(1/6)] for
which

klai,...,ar) < 271 and plag+1,Cr) < 2L5.
We apply lemma 2.0.6 to bound

Pr (Bt and plagr. C) <] < 200

and lemma 2.1.1 to bound

Pr[Eyiq and k(aq,... ,a;) <] < 467155/4.
For 1 <1< [log(1/4)], we bound

Pra,.. a0, [Ek+1 and k(ay,...,a;) <27 and p(api1, Cr) < 215}

= Prq,, . .a, [Ck # () and k(ay,...,a;) < 2—l+1]]
PI‘ak+1 [CkJrl = and P(akJrlaCk) < 21(5 ‘ C. 75 ?® and H(al, . 7ak) < 27l+1}
2L45d1/*

< Prq,.. .a, [Ck # 0 and k(aq,...,a;) < Q*ZH] — by lemma 2.0.6,
27l+14nd5/4 2[45d1/4
< , by equation 5,
o
326nd>/?

o2

13

Summing over the choice for [, we obtain

Pr [Ey41 and min{k(aq,...,ar),s(a1,... ,ar)p(akt1, Ck), plags1, Cr)} < 0]

45nd®/* 45414 326nd3/?
< S o [log(1/0)] 5 —

g

And3/* + 4 + 32[log(1 3/2
5<nd + +3£0g(/6)]nd >7bya§1/\/8,

5 <4Oflog(1/5ﬂnd3/2> .

g

(7)

o2

On the other hand, we can bound the denominator of (6) by observing that as; is a Gaussian centered
at a point @ax41 of norm at most 1; so, corollary A.0.14 implies

Pr [4 +2|ag1] =6+ 20\/2dln(e/e)} <e

By applying this bound and (7) with 6 = ¢(6 + 20+4/2d1n(e/¢)), we obtain

)
(via the schema: Pr[num <¢ < Pr[den > -]+ Prlnum < 6])
€

Pr[Ey and p([a1,...,a;],C) < ¢
e+ (6+20/2d(e/e)) (40[1%(1/6(3 +f’\/W(e/e)))Wi?’”)

IN

o2

IN

40[log(1 d3/?
e+ €6+ 3y/In(e/e)(Oftog(1/(3€)) In), using o < 1/V/d in the first term

o2

(
(9v/ine/e)) (40 [log(1/ (36))]nd3/z>

IN

€+ €
o2

< , since (1/In(e/e))(log (1/3€)) < log'®(1/€)

360 log1 5 1/eﬂnd3/2>

<

(361[1og1 °(1/e)1nd3/z>

Plugging this in to (4), we get

361en?d/?log"®(1/€)]

- 2

Pr [C) is infeasible and p ([a1, ... ,a,],C) < €
o

O

2.3 Primal number, both cases

We combine the results of sections 2.1 and 2.2 to prove lemma 2.0.4, that the primal condition number
is probably low.

Proof of Lemma 2.0.4 In lemma 2.1.1, we show that

. . dend®/4
Pr[(Ax >0, © € Cy is feasible) and (p(4,Cp) < ¢€)] < ,

g

14

while in lemma 2.2.1, we show

Le[log™® (1 23/2
Pr[(Ax > 0, = € Cy is infeasible) and (p(4,Cp) <e€)] < <36 cllog “(1/e)In) .

o2
Thus,
Pr[p(4,C)<e = Pr[(Ax >0, z € Cy is feasible) and (p(4, C)) < €)]
+ Pr[(Azx >0, = € C| is infeasible) and (p(A,Co) < ¢€)]
<4end5/4) N (361eﬂog1'5(1/6ﬂn2d3/2>

2

o o

365¢[log*(1/€)|n2d3/?

< o

Letting € = 0/(3alog"(/8)) where o = 365”252/2, and using that Pr [p(A,C) < €] & Pr [m > ﬂ
yields 7

2 73/2 2 73/2 Sloot®(32 10et 0 (2

Pr L 1100 n*d 10g3/2(370nd . odlos (5150g (5))
p(4,C) bo? 6202 3alog (%)

< §/2. 8)

At the same time, corollary A.0.14 tells us that
Pr [||A||F > 1+ 0v/nd 21n(2e/5)] <5/2.

The lemma now follows by applying this bound, o < 1/v/nd, and (8), to get

[Aly _ (L+/2In(2e/5)1100 n*d*/? 1og?2(370 n2d3/? 1 s

P
"1 oA, 0) 502 5202

To derive the lemma as stated, we note

2 13/2 2 73/2 12 ,,2,33/2 9 ,273/2
2
(14 +/21n(2¢/6))1100 n%d 372,370 n?d%/ 212 n2q3/2 29 n2dd/
do? log™*(0202 - 6202 o8 6202

.0

3 Dual Condition Number
In this section, we consider linear programs of the form
ATy =¢, y>o.
The dual program of form (1) and the primal program of form (3) are both of this type. The dual
program of form (4) can be handled using a slightly different argument than the one we present. As in

section 2, we omit the details of the modifications necessary for form (4). We begin by defining distance
to ill-posedness appropriately for the form of linear program considered in this section:

Definition 3.0.1 (Dual distance to ill-posedness) For a matriz, A, and a vector ¢, we define p(A4, c)
by

15

a. if ATy = ¢, y > 0 is feasible, then p(A,c) =
sup {€ : |AA||p + | Ac||p < € implies (A+ AA)Ty = c+ Ac, y > 0 is feasible}

b. if ATy = ¢, y > 0 is infeasible, then p(A,c) =
sup {€: |AA|p + | Ac||p < € implies (A+ AA)Ty = c+ Ac, y > 0 is infeasible}
The main result of this section is:

Lemma 3.0.2 (Dual condition number is likely low) Let A and ¢ be a Gaussian random matriz
and vector of variance 0%, o < 1/v/nd, centered at A and &, respectively. If HAHF <1 and |l¢|| <1, then

Pr 5 5

|4, | .. 1000 d'/4n1/? log! <200 d1/4n1/2>} < .
€0

p(A,c) €

We begin by giving several common definitions that will be useful in our analysis of the dual condition
number. We define a change of variables, and we then develop a sufficient geometric condition for the
dual condition number to be low. In lemma 3.0.9 and in the proof of lemma 3.0.2, we show that this
geometric condition is met with good probability.

Definition 3.0.3 (Cone) For a set of vectors a1, ... ,a,, let Cone (a1,... ,a,) denote
{(BZ(L’Z Zi)\iai7)\1 20}

Definition 3.0.4 (Hull) For a set of vectors ay,... ,a,, let Hull (ay,... ,a,) denote
{:x=3Nai;, \i>0, Y, N=1}.

Definition 3.0.5 (Boundary of a set) For a convexr set S, let bdry(S) denote the boundary of S,
ie., {x:Ve>0, Je, |le| <e€ st.x+ec S, z—e¢ S}.

Definition 3.0.6 (Point-to-set distance) Let dist (x,S) denote the distance of x to S, i.e.,
min{e: Je, |le|| <e, sit. x+eeS}.

Note that Cone (ai,... ,ay) is not an open cone, while Hull (a4, ... ,a;) is the standard convex hull of
{al, AN ,an}.

We observe that there exists a solution to the system ATy = ¢, y > 0 if and only if
c € Cone(ay,...,a,),
and that for ¢ # 0, this holds if and only if

Ray (c¢) intersects Hull (a4, ... ,a,).

The main idea we need beyond the ideas of section 2 is to perform an illuminating change of variables.
We set

n
z = (1/n) Zai, and
i=1
x; = a;—z,fori=1ton—1.
For notational convenience, we let @, = a,, — z, although «,, is not independent of {z,x1,... ,x,_1}.

We can restate the condition for the linear progam to be ill-posed in these new variables:

16

Lemma 3.0.7 (Ill-posedness in new variables)

ATy =c, y >0, c#0 is ill-posed if and only if z € bdry(Ray (c) — Hull (zy,... ,x,)).

Proof: We observe

ATy =¢, y > 0is feasible <= Ray|(c) intersects Hull (ai,... ,a,)
<= Ray(c) intersects z + Hull (z1,... ,x,)
< ze€Ray(c)—Hull(x,...,x,).
For ¢ # 0, Ray (¢)—Hull (x4, ... , z,) is a continuous mapping from ¢, €1, ... , &, to subsets of Euclidean

space, and so for z in the set and not on the boundary, a sufficiently small change to all the variables
simultaneously will always leave z in the set, and similarly for z not in the set and not on the boundary.

To establish the other direction, if z is on the boundary, we can just perturb z to bring it in or out of the
set. Although z,x1,...,x, are determined by the a1,... ,a,, we can perturb the ai,...,a, so as to
change the value of z without changing the values of any of the @1, ... ,x, (see the proof of lemma 3.0.8
below for more detail on why the change of variables permits this).

The lemma is also true for ¢ = 0, but we will not need this. O

Note that Ray (¢) — Hull (xy,... ,@,) is a convex set. The following lemma will allow us to apply
lemma 2.0.5 to determine the probability that z is near the boundary of this convex set.

Lemma 3.0.8 (Independence of mean among new variables) Let ay,...,a, be
Gaussian random vectors of variance o2 lying in R?. Let

1 .
z:—Zai and x; =a; — z, for1 <i<n.
e

Then, z is a Gaussian random vector of variance o*/n and is independent of Ty, ... ,Tp.

Proof: As z is the average of n Gaussian random vectors of variance ¢, it is a Gaussian random vector of
variance 02 /n. We have that z is independent of @1, ... , z, because the linear combination of a1, ... ,a,
used to obtain z is orthogonal to the linear combinations of a4, ... ,a, used to obtain the x;s. O

We proceed to apply lemma 2.0.5.

Lemma 3.0.9 (Mean is likely far from ill-posedness) Let ¢ and a1, ... ,a, be Gaussian random
vectors of variance o? lying in R?. Let

1 .
z:fZai and x; =a; — z, for1 <i<n.
ne

Then,

ed/Ap1/2
Pr [dist (z,bdry(Ray (¢) — Hull (z1,... ,2,))) < < ———.

o
Proof: Let ¢ be arbitrary. By lemma 3.0.8, we can choose x1,... ,x, and then choose z independently.

Having chosen 1, ... ,x,, we fix the convex body Ray (¢) — Hull (x4, ... ,x,) and apply lemma 2.0.5.
The factor of 2 arises because z must miss an € boundary on either side of the convex body. O

17

Lemma 3.0.10 (Geometric condition to be far from ill-posedness in new variables.) If

dist (z,bdry(Ray (¢) — Hull (21, ... ,x,))) > « 9)
and
[Az]] < «/4,
allc|
Ac| < ,
I8el = S Al + ma: Jaal)
then

z+ Az ¢ bdry(Ray (¢ + Ac) — Hull (x1 + Axy,... ,x, + Az,))

Proof: Assume for the purpose of showing a contradiction that
z + Az € bdry(Ray (¢ + Ac) — Hull (z + Azy,... ,x, + Ax,))

Consider the case that z ¢ Ray (¢) — Hull (x4, ... ,x,). We will show that
dist (z,bdry(Ray (¢) — Hull (21, ... ,2,))) < «, contradicting our lemma assumption (9). Since z +
Az € bdry(Ray (¢ + Ac) — Hull (z1 + Az,z, + Azy,)),

z+ Az = \c+ Ac) — Z%(sz + Azx;),

for some A > 0 and 7v1,... ,7, > 0,>,7 = 1. We establish an upper bound on X by noting that

Nz +Az+ 30 i + Az

A
lle + Ac]|

We lower bound the denominator by ||| /2 by observing that

allc|
Ac|| <
| Acll < 200+ A(| 2] + max; []])

< el /2.

We upper bound the numerator by

IN

z+Az+) i@+ Axzy)

2] + /4 + Z%‘(H%H + [|Az|)

IN

[[2[l + /4 + max [,]| + «/4

(12| + max [|a; | 4 /2.

Thus,

12| + max; ||| + /2

lell /2

A<

Since

z—i—Az—)\Ac—i-Z%Aaci = /\C—Z%wi € Ray (¢) — Hull (x4, ... ,x,)

18

We find that

dist (z,bdry(Ray (¢) — Hull (21, ... ,x,)))

IN

Az — \Ac + Z v Ax;

7

IN

1AZ] + AlAe] + D i l|Az|

a_ <||2||+maxi ||w1:||+0é/2) (alef >+g
4 el /2 2a + 4(||z]| + max; [[zl])) 4
.

This establishes a contradiction in the case that z € Ray (¢) — Hull (1, ... ,2,). Now consider the case
that z € Ray (¢) — Hull (x4, ... ,x,). Since

IN

z+ Az € bdry(Ray (¢ + Ac) — Hull (21 + Axy,... ,x, + Ax,))

there exists a hyperplane H passing through z + Az and tangent to the convex set

Ray (¢ + Ac) — Hull (1 + Ay, ... ,x, + Ax,). By the assumption that

dist (z,bdry(Ray (¢) — Hull (21, ... ,x,))) > «, there is some dy > 0 such that, for every ¢ € (0,dp),
every point within a+§ of z lies within Ray (¢) —Hull (21, ... ,x,). Choose é € (0,dp) that also satifises
§ < ||z[| + max; ||&; . Let g be a point at distance 2% + § from z + Az in the direction perpendicular to
H. Since dist (2,2 + Az) < 2, and dist (z + Az,q) < 3 + 4,

q € Ray (c) — Hull (z4,... ,x,)
At the same time,
3£
4
Because g € Ray (¢) — Hull (x1,... ,®,), there exist A > 0 and ~1,... ,7, > 0,7 = 1 such that

q=)\c— Z%wZ
i

dist (¢, Ray (¢ + Ac) — Hull (z1 + Az,z, + Az,)) >

We upper bound A as before,
5o Mgt 2wzl NIzl + o+ 6+ max o] _ |lz]| + max; 2] + /2

llell - llell - llell /2
Hence
q+ M\Ac— Z%A:ci = MNc+ Ac) — Z vi(x; + Ax;)
€ Ray(c+ Ac) —Hull (z + Az, ... ,z, + Ax,)
and thus
dist (¢, Ray (c+ Ac) — Hull (1 + Az, ... ,x, + Az,)) < |[Mec-— Z’yiAa:i
< AMAc| + max || Az||
< a/2+a/4
< 3a/4
which is a contradiction. This concludes the proof of the lemma. O

We now derive a consequence of lemma 3.0.10 that uses both the original and the new variables.

19

Lemma 3.0.11 (Reciprocal of distance to ill-posedness) Let ¢ and a,,... ,a, be vectors in R®.
Let

1
Z—E i and T; = a; — 2, I<i<n
z=_ i a; and x; = a; — z, for i<n
k1 = dist (z, bdry(Ray (¢) — Hull (x4,... ,x,)))

ko = |e]

Then

1 a { 8 4 24max; |la; }
X4 —, —, ————— .
p(A,c) ~ ki’ ko K1k

Proof: By the definition of k; and k2 and lemma 3.0.10, we can tolerate any change of magnitude up to
k1/41in z,{x;} and any change of up to 2k1+4(|\;|\1ﬁnax||$i\l) in ¢ without the program becoming ill-posed.

We show that this means we can tolerate any change of up to k1/8 in a; without the program becoming
ill-posed. Formally, we need to show that if || Aa;|| < k1/8 for all ¢, then |Az|| < k1/4 and ||Az;|| < k1 /4.
Since Az = (1/n) > Aa;, ||Az|| < k1/8. Since Ax; = Aa; — Az, ||Ax;|| < k1/8+ k1 /8 = k1/4. Thus

. k1 kiko
A > -
pld,e) = mm{ 8" 2 + (2] +max||wi||>}

which implies

A\

L [8 4 8(z] + maxal)
p(A,C) - k‘l, kQ’ klkg

Since z = (1/n) Y a; = ||z|| < max ||a;]|, and x; = a; — z = ||z;|| < ||a;]| + ||z]] < 2max||a;||, we have

1 < ma { 8 4 24max|ai|}
X _7 _7 - 3 47
p(A,c) ~ ki’ ko K1k

This concludes the proof. O

Proof of Lemma 3.0.2 Let

1 .
z:gZaiandwi:ai—z, for 1 <i <n,
3

k1 = dist (z,bdry(Ray (¢) — Hull (21, ... ,x,))) and k2 = ||c]| .

We will apply the bound of lemma 3.0.11. We first lower bound min {ky, ks, k1ko}. We begin by noting
that if

min {kq, ko, k1ka} <€,
then either
dist (z, bdry(Ray (¢) — Hull (x4, ... ,xy))) <, (10)
or

el <, (11)

20

or there exists some integer [, 1 < < [log 1], for which
dist (z,bdry(Ray (c) — Hull (xy,... ,x,))) < 2'e and ||| <27 (12)

The probabilities of events 10 and 11 will also be bounded in our analysis of event 12. By corollary A.0.15,
for d > 2, we have

€ee
Prle| < q < <,

which translates to

—l41
Pr [Jlcf <271 <

)
(o

while lemma 3.0.9 implies

8. 2l6d1/4n1/2

Pr [dist (z, bdry(Ray (c) — Hull (z1,... ,x,))) < 2le] <
o

Thus, we compute

8 ed/4nl/2 ec fog ¢1 €271+ 8. oledl/4p1/2

Pr [min{kl,kg,klkg} < E] < —
o o — o o
8 ed/4nl/2 ee 16eed /4nt/? 1
= 4+—+7210g(—)
o o o €
55 ed'/*n1/? 1
< 2 IOg(E)'

We re-write this as

€c? eo?

9 1/4,,1/2 9 1/4,,1/2
Pr [max{l/kl,l/kg,l/k1k2} > 00d 7 n 10g(00d n):l <

N

From corollary A.0.14, we know that

Pr [||A,c||F >3+0y/(d+ n 21n(2e/e)} <

N

Thus,

|A, ¢l _ 200 dY/*n'/2 200 d/*n'/?
I Dn2In(2 < e
Ao e ey)B+oV([@+ Dn2in(2e/)| <

Pr

To derive the lemma as stated, we conclude with

200 d'/*nt/? 200 d/4nt/?
i 602”)3+ o\/(d+ L)n 21n(2e/e)) <

€o

1000 d'/*n1/? log! (200 d1/4n1/2)

2 2

€0 €0

21

4 Combining the Primal and Dual Analyses

Our main theorem is now very easy to prove.

Proof of Theorem 1.4.1 Apply lemmas 3.0.2 and 2.0.4:

913,,23/2) 291,23/2 911 g1/4,1/2 s 98 41/4,,1/2
— log 5 + 5 log —
€0

€0 €0 €0

214n2d3/2 210’)’L2d3/2
g ()

2 2

€o €0

O

We recall the four canonical forms for linear programs that we have discussed.

max ¢’z st. Az <b anditsdual min b’y st ATy=¢, y>0, (1)

max ¢’z st. Az <b, x>0 anditsdual min b’y st. ATy<e, y>0 (2)
max ¢'x st. Ax=b, £ >0 anditsdual min b’y st. ATy <c (3)
find x #0s.t. Az <0 anditsdual findy#0st. Aly=0,y>0, (4)

Renegar developed efficient algorithms for both solving and estimating the condition number of programs
in form (2) in [Ren94]. Vera [Ver96] developed efficient algorithms for forms (1) and (3). Cucker and
Penia developed algorithms for form (4) in [CP01]. In [FV00], Freund and Vera give a unified approach
which both efficiently estimates the condition number and solves the linear programs in any of these
forms. A bound on the smoothed complexity of all of these algorithms follows from theorem 1.4.1.

5 Future Directions

We hope that smoothed analysis of algorithms provides an attractive avenue for other researchers to
explore the discrepancy that is sometimes observed between the worst-case complexity and the typical
performance of algorithms. We also hope that this work illuminates some of the potential shared inter-
ests of the numerical analysis, operations research, and theoretical computer science communities. One
potential direction for future research is the application of smoothed analysis to other problem domains.

We do not address in this thesis the question of the actual distribution of condition numbers. We would
be particularly interested to hear the results of computational experiments, like those of Freund and
Ordofiez[FO02], that explore the distribution of condition numbers occurring in real-world problems.

References
[Bal93] K. Ball. The reverse isoperimetric problem for gaussian measure. Discrete and Computational
Geometry, 10(4):411-420, 1993.

[BD02] Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear pro-
gramming. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), 2002. Available at http://theory.lcs.mit.edu/~jdunagan/.

[BR76] Bhattacharya and Rao. Normal approximation and asymptotic expansion. pages 23-38, 1976.

[CP01] F. Cucker and J. Pefia. A primal-dual algorithm for solving polyhedral conic systems with a
finite-precision machine. Submitted to STAM Journal on Optimization, 2001.

22

[DG9Y]

[FE00a]

[FEO0b]

[FEO01]

[FMO0]

[FNO1]

[FO02]

[FV99]

[FV00]

[LDK63]

[Ren94)

[Ren95a]

[Ren95b]

[ST]

[STO1]

[Ver96]

S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma. Inter-
national Computer Science Institute, Technical Report 99-006, 1999.

Robert Freund and Marina Epelman. Condition number complexity of an elementary algo-
rithm for computing a reliable solution of a conic linear system. Mathematical Programming,
88(3):451-485, 2000.

Robert Freund and Marina Epelman. Condition number complexity of an elementary algorithm
for resolving a conic linear system. Technical Report O.R. Working Paper 319-97, MIT, 2000.

Robert Freund and Marina Epelman. A new condition measure, pre-conditioners, and rela-
tions between different measures of conditioning for conic linear systems. SIAM Journal on
Optimization, 2001.

Robert Freund and Shinji Mizuno. Interior point methods: Current status and future directions.
In H. Frenk et al., editor, High Performance Optimization, pages 441-466. Kluwer Academic
Publishers, 2000.

Robert Freund and Manuel Nunez. Condition-measure bounds on the behavior of the central
trajectory of a semi-definite program. SIAM Journal on Optimization, 11(3):818-836, 2001.

R. Freund and F. Ordonez. Ipm practical performance on Ips and the explanatory value of
complexity measures. Proceedings of the 7th SIAM Conference on Optimization (SIOPT),
2002.

Robert Freund and Jorge Vera. On the complexity of computing estimates of condition measures
of a conic linear system. Operations Research Center Working Paper, MIT, 1999, submitted
to Mathematics of Operations Research, 1999.

Robert Freund and Jorge Vera. Condition-based complexity of convex optimization in conic
linear form via the ellipsoid algorithm. SIAM Journal on Optimization, 10(1):155-176, 2000.

B. Grunbaum L. Danzer and V. Klee. Helly’s theorem and its relatives. In Convezity (Pro-
ceedings of the Symposia on Pure Mathematics 7), pages 101-180. American Mathematical
Society, 1963.

J. Renegar. Some perturbation theory for linear programming. Math. Programming, 65(1, Ser.
A):73-91, 1994.

J. Renegar. Incorporating condition measures into the complexity theory of linear programming.
SIAM J. Optim., 5(3):506-524, 1995.

J. Renegar. Linear programming, complexity theory and elementary functional analysis. Math.
Programming, 70(3, Ser. A):279-351, 1995.

Daniel A. Spielmana and Shang-Hua Teng. Models and applications of smoothed analysis. In
submission.

Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the sim-
plex algorithm usually takes polynomial time. In Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing (STOC ’01), pages 296-305, 2001. Available at
http://math.mit.edu/~spielman/SmoothedAnalysis/.

Jorge Vera. Ill-posedness and the complexity of deciding existence of solutions to linear pro-
grams. SIAM Journal on Optimization, 6(3), 1996.

23

A Gaussian random variables

We recall that the probability density function of a Gaussian random variable is given by
p(z) = (1/v/2m)e /2.

A Gaussian random vector of variance o2 is a vector where each element is a Gaussian random variable
of variance 02. A Gaussian random matrix is defined similarly. The probability density function of a

d-dimensional Gaussian random vector of variance o2 centered at Z is given by
p(x) = (1/(ov2m) e le-2l/@r%),

We now derive particular versions of well-known bounds on the Chi-Squared distribution. These bounds
are used in the body of the paper, and bounds of this form are well-known. We thank DasGupta and
Gupta [DG99] for this particular derivation.

Fact A.0.12 (Sum of gaussians) Let Xi,..., X, be independent N(0,0) random variables. Then

d o2 2
Pr[z X? > /@2] < ez (1= gz tIn)

Proof: For simplicity, we begin with Y; ~ N(0,1). A simple integration shows that if Y ~ N(0, 1) then

E[ety2] _ ﬁ (t < %) We proceed with

d
P V2> H =
i=1

d
Pr[z Y2~k >0] (for t > 0)
i=1

Pr[et(m=1 YEok) > 1] < (by Markov’s Ineq.)
E[et(z ?:1 Yiz_k)]

1 d/2
(m) e_kt S (lettlng t=

d/2
(g) 67§+ = e2

| =
|

=
N—

vl
I
—~
=
|
alx
*+
=]
al
N

Since
d d
Pr(} V72 > k] =Pr[) X} > 0%k
i=1 i=1
w2 . 9(1—5+1n5) i(l—i—klni) . .

we set k = %5 and obtain e2 d i) =e2 do? 402’ which was our desired bound. |
Fact A.0.13 (Alternative sum of gaussians) Let Xi,...,Xy be independent N(0,0) random vari-
ables. Then

d
Pr[z X? > cdo?] < e2(1-ctinc) c>1
i=1

24

d
Pr[z X2 < cdo?] < e2(l-ctinc) c<1
i=1

Proof: The first inequality is proved by setting k& = cd in the last line of the proof of fact A.0.12. To
prove the second inequality, begin the proof of fact A.0.12 with Pr[Zle Y? < k] and continue in the
obvious manner. O

Corollary A.0.14 Let x be a d-dimensional Gaussian random vector of variance o* centered at the
origin. Then, for d > 2 and ¢ < 1/e?,

Pr [||mu > oy/d(1 + 2111(1/6)} <e

Proof: Set ¢ =1+ 2In(1/e) in fact A.0.13. We then compute

e%(l—c-&-lnc) < el—c+1nc < e—21n%+1n(1+21n%) _ ee—ln%+ln(1+21n%)

We now seek to show

efln%+ln(1+2 In %) S 1
1 1

< —ln-+mIn(1+2lh-) < 0
€ €

1 1

& 142ln- < -

€ €

For € = 1/€2, the left-hand side of the last inequality is 5, while the right-hand side is greater than 7.
Taking derivatives with respect to 1/¢, we see that the right-hand side grows faster as we increase 1/¢
(decrease €), and therefore will always be greater. O

Corollary A.0.15 Let x be a d-dimensional Gaussian random vector of variance o centered at the
origin. Then, for d > 2,

Pr|z) <<=
g

Proof: If e < 0, set ¢ = % in fact A.0.13.

2
e%(176+1nc) < elchrlnc < elJrlnc _ ee E
- - g

— <
do? —

If € > o, the statement is vacuously true. O

25

