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Abstract

The smoothed complexity [1] of an algorithm is the
expected running time of the algorithm on an arbi-
trary instance under a random perturbation. It was
shown recently that the simplex algorithm has poly-
nomial smoothed complexity. We show that a simple
greedy algorithm for linear programming, the perceptron
algorithm, also has polynomial smoothed complexity, in
a high probability sense; that is, the running time is
polynomial with high probability over the random per-
turbation.

1 Introduction

Spielman and Teng [1] recently proposed the smoothed
complexity model as a hybrid between worst-case and
average-case analysis of algorithms. They analyzed
the running time of the simplex algorithm with the
shadow vertex pivot rule for a linear program with
m constraints in d dimensions, subject to a random
Gaussian perturbation of variance σ2. They showed
that the expected number of iterations of the simplex
algorithm was at most f(m, d, σ), given as follows:

f(m, d, σ) =

{
Õ(d

16m2

σ ) if dσ ≥ 1,
Õ(d

5m2

σ12 ) if dσ < 1.
Each iteration of the simplex algorithm takes

O(md) time when we let arithmetic operations have unit
cost. Spielman and Teng also speculate that their cur-
rent analysis can be improved to yield an upper bound
on the expected number of iterations of Õ(d

5m2

σ4 ).
In this paper, we show that a simple greedy lin-

ear programming algorithm known as the perceptron
algorithm[2, 3], commonly used in machine learning,
also has polynomial smoothed complexity (in a high
probability sense). The problem being solved is iden-
tical to that considered by Spielman and Teng, except
that we replace the objective function max cTx by a
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constraint cTx ≥ c0. In addition to simplicity, the per-
ceptron algorithm has other beneficial features, such as
resilience to random noise in certain settings[4, 5, 6].

Specifically, we prove the following result, where all
probability statements are with respect to the random
Gaussian perturbation of variance σ2. Note that each
iteration of the perceptron algorithm takes O(md) time,
just like the simplex algorithm.

Theorem 1.1. (Perceptron Smoothed Complexity)

Let L be a linear program and let L̃ be the same linear
program under a Gaussian perturbation of variance σ2,
where σ2 ≤ 1/2d. For any δ, with probability at least
1− δ,

either (i) the perceptron algorithm finds a feasible
solution to L̃ in O(d

3m2 log2(m/δ)
σ2δ2 ) iterations

or (ii) L̃ is either infeasible or unbounded

The case of small σ is especially interesting because
as σ decreases, we approach the worst-case complexity
of a single instance. The theorem does not imply a
bound on the expected running time of the perceptron
algorithm (we cannot sample a new L̃ if we are unhappy
with the current one), and thus the running time
bounds given for the perceptron algorithm and simplex
algorithm are not strictly comparable. Throughout the
paper we will assume that σ2 ≤ 1/2d.

The perceptron algorithm solves linear program-
ming feasibility problems and does not take in an ob-
jective function. However, given an objective function
max cTx, we can use binary search on c0 to find x ∈ L̃
such that cTx ≥ c0. For a particular c0, the probability
that the algorithm finds x ∈ L̃ such that cTx ≥ c0 in
Õ(d

3m2

σ2δ2 ) iterations (times the overhead of binary search
on c0) is p(c0)− δ, where we define

p(c0) = Pr[for some x ∈ L̃, cTx ≥ c0, and L̃ is bounded]

Since a solution with objective value c0 or more only
exists with probability p(c0) (unless L̃ is unbounded),
this is a strong guarantee for the algorithm to provide.

The guarantee of theorem 1.1 is weaker than that
of Spielman and Teng[1] in two ways. First, the sim-
plex algorithm both detects and distinguishes between



unbounded and infeasible perturbed linear programs,
while we do not show a similar guarantee for the percep-
tron algorithm. Secondly, the simplex algorithm solves
the perturbed linear program to optimality, while we
show that the perceptron algorithm finds a solution
which is good with respect to the distribution from
which L̃ is drawn, but which may not be optimal for
L̃ itself.

The high level idea of our paper begins with the ob-
servation, well-known in the machine learning literature,
that the perceptron algorithm quickly finds a feasible
point when there is substantial “wiggle room” available
for a solution. We show that under random perturba-
tion, with good probability, either the feasible set has
substantial wiggle room, or else the feasible set is empty.
In the remainder of the paper, we define the model of
a perturbed linear program exactly (section 2), define
the perceptron algorithm and prove a convergence cri-
terion for it (section 3), state two geometric arguments
(section 4), and finally prove our main theorem (section
5). We then give a short discussion of the meaning of
our work in section 6. The proofs of several technical
results are deferred to the appendices.

2 The Perturbation Model

We begin by restating the model of [1]. Let the linear
program L be given by

max cTx(2.1)
s.t. aTi x ≤ bi ∀i ∈ {1, . . . ,m}(2.2)

|ai| ≤ 1 ∀i(2.3)
bi ∈ {±1} ∀i(2.4)

As remarked there[1], any linear program can be
transformed in an elementary way into this formulation.
Now let ãi = ai + σgi, where each gi is chosen
independently according to a d-dimensional Gaussian
distribution of unit variance and zero mean. Then our
new linear program, L̃, is given by

max cTx(2.5)
s.t. ãTi x ≤ bi ∀i(2.6)

For completeness, we recall that a d-dimensional
Gaussian is defined by the probability density function

µ(x) =
(

1/
√

2π
)d
e−|x|

2/2

We will only define the perceptron algorithm for
solving linear programming feasibility problems that
have been recast as cones. To put the linear program
(2.5, 2.6) into this form, we replace the objective
function max cTx by cTx ≥ c0 for some c0, and

then perform an elementary transformation on the
resulting linear programming feasibility problem. The
transformation only adds a single dimension and a single
constraint, results in a cone, and is specified as follows.
Given the system of linear constraints

cTx ≥ c0(2.7)
ãTi x ≤ bi ∀i(2.8)

we claim that the following transformed system of linear
constraints

(−c, c0)T (y, y0) ≤ 0(2.9)
(ãi,−bi)T (y, y0) ≤ 0 ∀i(2.10)

is simply related to the original. Given any solution to
the original system (2.7, 2.8), we can form a solution to
the transformed system (2.9, 2.10) via

(y, y0) = (x, 1)

Now suppose we have a solution (y, y0) to the
transformed system (2.9, 2.10) where y0 6= 0 and
(−c, c0)T (y, y0) 6= 0. If y0 > 0, then x = y/y0 is a
solution to the original system (2.7, 2.8). On the other
hand, if y0 < 0, and x is any feasible solution to the lin-
ear program (2.7, 2.8) then x+λ(x− y/y0) is a feasible
solution to the linear program (2.5, 2.6) for every λ ≥ 0,
and the objective value of this solution increases with-
out bound as we increase λ. Therefore a solution with
y0 < 0 provides a certificate that if the linear program
(2.5, 2.6) is feasible with objective value at least c0, it
is unbounded.

We can now assume that the problem we wish to
solve is of the form

dTj w ≤ 0 ∀j ∈ {0, . . . ,m}(2.11)
w = (y, y0)(2.12)
d0 = (−c, c0)(2.13)
dj = (ãj ,−bj) j ∈ {1, . . . ,m}(2.14)

which is a rewriting of the system (2.9, 2.10). The
additional constraints y0 6= 0 and (−c, c0)T (y, y0) 6= 0
are not imposed in the linear program we are trying
to solve (these additional constraints are not linear),
but any solution returned by the perceptron algorithm
which we define below is guaranteed to satisfy these
additional two constraints.

3 The Perceptron Algorithm

We define the following slight variant on the standard
Perceptron Algorithm for inputs given by constraints
(2.11, 2.12, 2.13, 2.14), and with the additional “not-
equal-to-zero” constraints mentioned above:



1. Let w = (y, y0) be an arbitrary unit vector such
that y0 6= 0 and (−c, c0)T (y, y0) 6= 0. For example,
w = (−c,c0)

|(−c,c0)| , or w = (−c,1)
|(−c,1)| if c0 = 0, works.

2. Pick some dj such that dTj w ≥ 0 and update w by
w ←− w − α dj

|dj |
where α ∈ { 1

2 ,
3
4 , 1} is chosen to maintain the

invariant that y0 6= 0 and (−c, c0)T (y, y0) 6= 0.

3. If we do not have dTj w < 0 for all i, go back to step
2.

The running time of this algorithm has been the
object of frequent study. In particular, it is known to
be easy to generate examples for which the required
number of iterations is exponential.

The following theorem, first proved by Block and
Novikoff, and also proved by Minsky and Papert in [7],
provides a useful upper bound on the running time of
the perceptron algorithm. The upper bound is in terms
of the best solution to the linear program, where best
means the feasible solution with the most wiggle room.

Let w∗ denote this solution, and define ν = minj
|dTj w

∗|
|dj ||w∗|

to be the wiggle room. Then not only is w∗ feasible
(dTj w

∗ ≤ 0 ∀j), but every w within angle arcsin(ν)
of w∗ is also feasible. For completeness, we provide a
proof of the theorem here, as well as an explanation of
the behavior of the perceptron algorithm in terms of the
polar of the linear program.

Theorem 3.1. (Block-Novikoff) The perceptron
algorithm terminates in O(1/ν2) iterations.

Note that this implies the perceptron algorithm
eventually converges to a feasible solution if one exists
with non-zero wiggle room.

Definition of Polar. For any d-dimensional space
S filled with points and (d−1)-dimensional hyperplanes,
we define the polar of S to be the d-dimensional space
P (S), where, for every point p in S, we define a
hyperplane pTx ≤ 0 in P (S), and for every hyperplane
hTx ≤ 0 in S, we define a point h in P (S). Because
the linear programming feasibility problem we want to
solve is a cone, any feasible point x defines a feasible
ray from the origin. Thus it is fair to say P (P (S)) = S,
because two distinct points in S may map to the same
hyperplane in P (S), but in this case they belonged to
the same ray in S, which makes them equivalent for our
purposes. Because P (P (S)) = S, the polar is sometimes
called the geometric dual.

In the polar of our linear program, each constraint
dTj w ≤ 0 is mapped to a point dj , and the point we were
looking for in the original program is now the normal

vector to a hyperplane through the origin. Our desired
solution w is a hyperplane through the origin such that
all the dj are on the correct side of the hyperplane, i.e.,
dTj w ≤ 0 ∀j.

We can view the perceptron algorithm as choosing
some initial normal vector w defining a candidate hy-
perplane. At each step, the algorithm takes any point
dj on the wrong side of the hyperplane and brings the
normal vector closer into agreement with that point.

Proof. (of theorem 3.1) First, note that initially w
satisfies y0 6= 0 and (−c, c0)T (y, y0) 6= 0. On any update
step, if we start with w satisfying these two constraints,
then there are at most 2 values of α that would cause w
to violate the constraints after the update. Therefore we
can always find α ∈ { 1

2 ,
3
4 , 1} that allows us to perform

the update step.
Let w∗ be a unit vector. This does not change the

value of ν, and w∗ will still be feasible since the set of
feasible w∗ is a cone. To show convergence within the
specified number of iterations, we consider the quantity
wTw∗

|w| . This quantity can never be more than 1 since w∗

is a unit vector. In each step, the numerator increases

by at least ν
2 since (w − α dj

|dj | )
Tw∗ = wTw∗ − αd

T
j w
∗

|dj | ≥
wTw∗ + ν

2 . However, the square of the denominator
never increases by more than 1 in a given step since

(w − α
dj
|dj | )

2 = w2 − 2α dTj
|dj |w + α2( dj

|dj | )
2 ≤ (w2 + 1),

where we observed that dTj
|dj |w ≥ 0 for any j we would

use in an update step. Since the numerator of the
fraction begins with value at least -1, after t steps it
has value at least (tν/2 − 1). Since the denominator
begins with value 1, after t steps it has value at most√
t+ 1. Our observation that the quantity cannot be

more than 1 implies that (tν/2 − 1) ≤
√
t+ 1, and

therefore t = O(1/ν2).

4 Geometric Arguments

We will find the following theorem due originally to
Brunn and Minkowski very useful. We prove it in
appendix B for completeness.

Theorem 4.1. (Brunn-Minkowski) Let K be a d-
dimensional convex body, and let x̄ denote the center
of mass of K, x̄ = Ex∈K [x]. Then for every w,

maxx∈K wT (x− x̄)
maxx∈K wT (x̄− x)

≤ d

To give the reader a feel for the meaning of theorem
4.1, suppose we have a convex body and some hyper-
plane tangent to it. If the maximum distance from the
hyperplane to a point in the convex body is at least t,



then the center of mass of the convex body is at least
t

d+1 away from the bounding hyperplane.
We now state a lemma which will be crucial to our

proof of theorem 1.1. We defer the proof to appendix
D. No details of the proof of lemma 4.1 are needed for
the proof of our main theorem.

Lemma 4.1. (Small Boundaries are Easily Missed)

Let K be an arbitrary convex body, and let ∆(K, ε)
denote the ε-boundary of K, i.e.,

∆(K, ε) = {x : ∃x′ ∈ K, |x− x′| ≤ ε} \K

Let g be chosen according to a d-dimensional Gaussian
distribution with mean ḡ and variance σ2, g ∼ N(ḡ, σ).
Then

Pr[g ∈ ∆(K, ε)] = O

(
ε
√
d

σ

)

5 Proof of the Main Theorem

The next two lemmas will directly imply theorem 1.1.
Let M̃ denote the linear programming feasibility prob-
lem given by constraints (2.11, 2.12, 2.13, 2.14). M̃
is the linear program L̃ recast as a linear programming
feasibility problem in conic form (as explained in section
2).

When M̃ is feasible, we define ti to be the sine of
the maximum angle between any point w′ in the feasible
region and the hyperplane (−di)Tw ≥ 0, where we view
the feasible point w′ as a vector from the origin. That
is

ti = max
w′ feasible for M̃

−dTi w′

|di||w′|

This is the same as the cosine between −di and w′.
Intuitively, if ti is large, this constraint does not make
the feasible region small.

Lemma 5.1. (Margin for a Single Constraint)

Fix i ∈ {1, . . . ,m}.

Pr[M̃ is feasible and ti ≤ ε] = O

(
ε
√
d

σ
log

σ

ε
√
d

)

Proof. We imagine applying the perturbation to ai last,
after all the aj , j 6= i, have already been perturbed. Let
R denote the set of points (in the polar, normal vectors
to the hyperplane) w satisfying all the other constraints
after perturbation, i.e., R = {w : dTj w ≤ 0 ∀j 6= i}.
No matter what R is, the random choice of perturbation
to ai will be enough to prove the lemma. If R is empty,
then we are done, because M̃ will be infeasible no matter
what di = (ãi, bi) is. Thus we may assume that R is
non-empty.

Define D to be the set of possible values di could
take on so that M̃ is infeasible, i.e.,

D = {di : dTi w > 0 ∀w ∈ R}

Note that D is a convex cone from the origin. We define
F to be an “ε-boundary” of D in the sense of the sine
of the angle between vectors in D and F . That is,

F = {di : ∃d′i ∈ D s.t.
dTi d

′
i

|di||d′i|
≥
√

1− ε2} \D

F is the set of normal vectors di to a hyperplane
dTi w ≤ 0 that could be rotated by an angle whose
sine is ε or less to some other vector d′i and yield that
R ∩ {w : d′Ti w ≤ 0} is empty. F is useful because it is
exactly the set of possibilities for di that we must avoid
if we are to have ti > ε. We justify this claim about F
in appendix C.

Because we are not applying a perturbation to the
entire vector (ai, bi), we are interested in the restriction
of D and F to the hyperplane where the (d + 1)st

coordinate is bi. Clearly D ∩ {di : di[d+ 1] = bi} is still
convex. However, F ∩ {di : di[d+ 1] = bi} may contain
points that are not within distance O(ε) of D ∩ {di :
di[d + 1] = bi} (even though F ∩ {di : di[d + 1] = bi}
is still an “ε-boundary” of D ∩ {di : di[d + 1] = bi} in
the sense of the sine of the angle between two vectors).
To overcome this, we condition on the point di being a
bounded distance away from the origin; then ε variation
in sine of the angle between two vectors will correspond
to a proportional variation in distance. We proceed to
make this formal.

We can upper bound the probability that |ãi − ai| ≥
κ by analyzing a sum of Gaussians. Since |(ai, bi)| ≤

√
2

this will give us an easy upper bound of κ + 2 on
|di| with the same probability. The following technical
statement is proved in appendix A following the outline
of Dasgupta and Gupta[8].

Fact 5.1. (Sum of Gaussians) Let X1, . . . , Xd be
independent N(0, σ) random variables. Then

Pr[
d∑
i=1

X2
i ≥ κ2] ≤ e

d
2 (1− κ2

dσ2 +ln κ2

dσ2 )

Fact 5.1 yields that Pr[|di| ≥ κ + 2] ≤ e−κ
2/4 for

κ ≥ 1 (using that σ2 ≤ 1/2d). Suppose now that
|di| ≤ κ+ 2. Define

D′ = D ∩ {di : di[d+ 1] = bi} ∩ {di : |di| ≤ κ+ 2}

F ′ = F ∩ {di : di[d+ 1] = bi} ∩ {di : |di| ≤ κ+ 2}
Since |di| ≤ κ+2, we just need to show di /∈ F ′ in order
to have ti > ε. Given a point p1 ∈ F ′, ∃ p2 ∈ D′ such



that the sine of the angle between the two points is at
most ε. To show that F ′ is contained by an O(κ2ε)-
boundary of D′ in the sense of distance, we will show
that any two points in {di : di[d+ 1] = bi, |di| ≤ κ+ 2}
at distance |γ| from each other satisfy that the sine
of the angle between the two points is Ω(|γ/κ2|). To
reduce notation (and without loss of generality) assume
bi = 1. Let p1 and p2 be two points, p1 = (p, 1), p2 =
(p + γ, 1) (where γ is a vector of magnitude |γ|, and
|p| = O(κ)). Then the sine of the angle we want is

given by
√

1− (pT1 p2)2

p2
1p

2
2

. We proceed to evaluate

(pT1 p2)2

p2
1p

2
2

=
1 + 2p2 + 2pT γ + 2p2pT γ + p4 + (pT γ)2

1 + 2p2 + 2pT γ + 2p2pT γ + p4 + (p2γ2) + γ2

=
1

1 + Ω(γ2/κ4)
= 1− Ω(γ2/κ4)

Therefore the sine of the angle between p1 and p2 is
Ω(γ/κ2).

The above discussion has led us to the following
simple situation: we are seeking to show that any point
subject to a Gaussian perturbation of variance σ2 has a
good chance of missing the O(κ2ε)-boundary of a convex
body. By lemma 4.1, the perturbed point hits the
boundary with probability at most O(κ2ε

√
d/σ). The

following calculation illuminates what value to choose
for κ to obtain the claimed bound for this lemma. Let H
be the event that the perturbed point hits the boundary.

Pr[H] = Pr[H | d2
i ≤ κ2] Pr[d2

i ≤ κ2]+

Pr[H | d2
i > κ2] Pr[d2

i > κ2]

≤ O(κ2ε
√
d/σ) · 1 + 1 · e−κ

2/4

Setting κ2 = log(σ/(ε
√
d)) concludes the proof of lemma

5.1.

We now turn to the last lemma we want for the
proof of our main theorem. The idea of the lemma is
that if no single constraint leads to a small margin (small
ti), then the Brunn-Minkowski theorem will imply that
the feasible region contains a solution with large wiggle
room. A simple trick allows us to get away with
perturbing all but one of the constraints (rather than
all).

Lemma 5.2. (Margin for Many Constraints)

Let E denote the event that M̃ is feasible yet contains
no solution of wiggle room ν.

Pr[E] = O(
md1.5ν

σ
log

σ

d1.5ν
)

Proof. Setting ε = 4(d + 1)ν, it is a straightforward
application of the union bound and lemma 5.1 that

Pr[M̃ is feasible and yet for some i, ti ≤ ε]

= O(
md1.5ν

σ
log

σ

d1.5ν
)

We now show that if for every i, ti > ε, then the
feasible region M̃ contains a vector w′ with wiggle room
ν. If the reader desires to visualize w′ with wiggle room
ν, we suggest picturing that w′ forms the axis of an ice
cream cone lying entirely in M̃ , where any vector along
the boundary of the ice cream cone is at an angle from w′

whose sine is ν. Because the Brunn-Minkoski theorem
applies to distances, not angles, we will consider the
restriction of our feasible cone to a hyperplane.

Let w∗ be the unit vector that satisfies M̃ with
maximum wiggle room, and denote the wiggle room by
ν′. We suppose for purpose of contradiction that ν′ < ν.
Consider the restriction of the (d+ 1)-dimensional cone
M̃ to the d-dimensional hyperplane M̃ ′ defined by

M̃ ′ = M̃ ∩ {w : wTw∗ = 1}

M̃ ′ is clearly convex. In M̃ ′, w∗ forms the center of
a sphere of radius R = ν′√

1−ν′2
≤ 2ν′ for ν′ ≤ 1/2 (if

ν′ > 1/2, we are done). The restriction to M̃ ′ maintains
the contact between the boundary of the ice cream cone
and the bounding constraints, so w∗ forms the center
of a sphere of maximum radius over all spheres lying
within M̃ ′.

Let Hi be the hyperplane dTi w = 0, and let H ′i
be Hi restricted to {w : wTw∗ = 1}. Define si =
max{distance of w′ to H ′ : w′ ∈ M̃ ′}. We now show
si ≥ ti,∀i. Fix i, and let ŵ ∈ M̃ be a unit vector
satisfying −dTi ŵ

|di| = ti. Then ŵ is exactly distance ti

from the hyperplane Hi. Let ŵ′ be a scalar multiple of
ŵ such that ŵ′ ∈ M̃ ′. The norm of ŵ′ is at least that
of ŵ, and so ŵ′ is distance at least ti from Hi. Since
ŵ′ is distance at least ti from Hi, it is distance at least
ti from H ′i (using that H ′i is a restriction of Hi). Thus
si ≥ ti.

Let w̄ = Ew∈M̃ ′ [w], the center of mass of M̃ ′.
We apply theorem 4.1 to conclude that w̄ is distance
at least si

d+1 ≥ 4ν from the ith constraint, H ′i, for
all i ∈ {1, . . .m}. We now consider the unperturbed
constraint, dT0 w ≤ 0. Since w̄ satisfies dT0 w ≤ 0,
we construct w̄′ by starting at w̄, and then moving a
distance 2ν away from the restriction of the hyperplane
dT0 w = 0 to {w : wTw∗ = 1}. Since w̄ was distance
at least 4ν from all the other hyperplanes H ′i, i ∈
{1, . . . ,m}, w̄′ is distance at least 2ν from all the other
hyperplanes H ′i. An explicit formula for w̄′ is given



by w̄′ = w̄ − 2νd′0/|d′0|, where d′0 = d0 − (dT0 w̄)w̄. We
conclude that w̄′ is the center of a radius 2ν sphere lying
entirely within M̃ ′, contradicting the assumption that
the sphere of maximum radius in M̃ ′ had radius at most
2ν′ < 2ν. This concludes the proof of lemma 5.2.

Proof. (of Theorem 1.1) Lemma 5.2 and theorem 3.1 are
enough to conclude that for fixed c0, we can identify
a solution x satisfying cTx ≥ c0 as in theorem 1.1.
Set ν = O( δσ

md1.5 ln(m/δ) ) and then with probability at

least 1 − δ, either we find a solution to M̃ in O(1/ν2)
iterations, or M̃ is infeasible. If M̃ is infeasible, then
L̃ is infeasible. If we find a solution (y, y0) to M̃ with
y0 > 0, we have a solution to L̃ with objective value at
least c0. If y0 < 0, we know that L̃ is either infeasible
for the chosen value of c0 or unbounded.

6 Discussion

The first observation we make is that the preceding anal-
ysis was tailored to show that the perceptron algorithm
works in the exact same model of perturbation that
Spielman and Teng used. Our analysis would have been
shorter if our model of perturbation had instead been
the following: Start with a system of linear inequalities
{dTj w ≤ 0} for which we want to find a feasible point.
Then perturb each dj by rotating it a small random
amount in a random direction.

The second observation we make concerns the issue
of what polynomial running time in the smoothed com-
plexity model suggests about the possibility of strongly
polynomial running time in the standard complexity
model. The ellipsoid algorithm and interior-point meth-
ods are not strongly polynomial, while one of the appeal-
ing aspects of the simplex algorithm is the possibility
that a strongly polynomial pivot rule will be discovered.
The analysis in this paper suggests that the smoothed
complexity model sweeps issues of bit size under the
rug, as the following analysis of the ellipsoid algorithm
makes clear.

In the ellipsoid algorithm, we start with a ball of
radius 2L, where L is a function of the encoding length
of the input, and is polynomially related to the bit
size. Separating hyperplanes are then found until the
algorithm has obtained a feasible point, or else ruled
out every region of radius greater than 2−L. In the
proof of theorem 1.1, we transformed the linear program
so that the desired solution was now a vector w in
d + 1 dimensional space, and every scalar multiple of
w was equivalent. Consider a regular simplex around
the origin, scaled so that it contains a unit ball, and
let each of the d+ 2 faces represent a different possible
plane to which we could restrict the ellipsoid algorithm.
Each face is contained by a d dimensional ball of radius

d + 2. If the problem is feasible, one of the d + 2 faces
contains a ball of radius Õ( σδ

md1.5 ) with good probability.
Therefore the ellipsoid algorithm runs in expected time
polynomial in m, d, and log 1/σ, with no reference at all
to L.

Our main theorem suggests that we should com-
monly observe the perceptron algorithm to outperform
the simplex algorithm, yet in practice, the simplex al-
gorithm is much more widely used than the perceptron
algorithm for the task of solving linear programs. (The
use of the perceptron algorithm in machine learning is
due in large part to other needs in that area, such as
behaving reasonably even when the linear program is in-
feasible.) We offer several possible explanations for the
disparity between our theoretical analysis and the ob-
served performance in practice. One possibility is that
the simplex algorithm has much better smoothed com-
plexity than is naively inferable from the bound cited
at the beginning of this paper. Another possibility is
that the perceptron algorithm’s failure to achieve the
optimum of a particular perturbed linear program is a
noticeable hindrance in practice. Yet a third possibility
is that a different model of perturbation is needed to dis-
tinguish between the observed performance of the sim-
plex and perceptron algorithms. If this last statement
were the case, a relative perturbation model, such as that
put forward by Spielman and Teng in [1], seems to offer
a promising framework. It seems that the polynomial
time guarantee for the perceptron algorithm would not
stand up to this relative smoothed analysis, while the
simplex algorithm well might still have polynomial run-
ning time.
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A Bounds on Sum of Gaussians

We restate the bound on a sum of Gaussians (fact 5.1)
that we previously deferred proving. The distribution
we are analyzing is the Chi-Squared distribution, and
bounds of this form are well-known.

Fact A.1. (Sum of Gaussians) Let X1, . . . , Xd be
independent N(0, σ) random variables. Then

Pr[
d∑
i=1

X2
i ≥ κ2] ≤ e

d
2 (1− κ2

dσ2 +ln κ2

dσ2 )

Proof. For simplicity, we begin with Yi ∼ N(0, 1). A
simple integration shows that if Y ∼ N(0, 1) then
E[etY

2
] = 1√

1−2t
(t < 1

2 ). We proceed with

Pr[
d∑
i=1

Y 2
i ≥ k] =

Pr[
d∑
i=1

Y 2
i − k ≥ 0] = (for t > 0)

Pr[et(
∑d
i=1 Y

2
i −k) ≥ 1] ≤ (by Markov’s Ineq.)

E[et(
∑d
i=1 Y

2
i −k)] =(

1
1− 2t

)d/2
e−kt ≤ (letting t =

1
2
− d

2k
)(

k

d

)d/2
e−

k
2 + d

2 = e
d
2 (1− kd+ln k

d )

Since

Pr[
d∑
i=1

Y 2
i ≥ k] = Pr[

d∑
i=1

X2
i ≥ σ2k]

we set k = κ2

σ2 and obtain e
d
2 (1− kd+ln k

d ) =

e
d
2 (1− κ2

dσ2 +ln κ2

dσ2 ) which was our desired bound.

Fact A.2. (Alternative Sum of Gaussians) Let
X1, . . . , Xd be independent N(0, σ) random variables.
Then

Pr[
d∑
i=1

X2
i ≥ cdσ2] ≤ e d2 (1−c+ln c)

Pr[
d∑
i=1

X2
i ≤ cdσ2] ≤ e d2 (1−c+ln c)

Proof. The first inequality is proved by setting k = cd
in the last line of the proof of fact A.1. To prove
the second inequality, begin the proof of fact A.1 with
Pr[
∑d
i=1 Y

2
i ≤ k] and continue in the obvious manner.

B Proof of Brunn-Minkowski Theorem

We restate theorem 4.1 and then prove it. This
theorem is one of many results belonging to the Brunn-
Minkowski theory of convex bodies.

Theorem B.1. (Brunn-Minkowski) Let K be a d-
dimensional convex body, and let x̄ denote the center of
mass of K, x̄ = Ex∈K [x]. Then for every w,

maxx∈K wT (x− x̄)
maxx∈K wT (x̄− x)

≤ d

Figure 1: Worst case K for theorem 4.1.

1 d

Proof. The entire proof consists of showing that figure
1 is the worst case for the bound we want. Without loss
of generality, let x̄ be the origin. Let K and w be fixed,
and let w be a unit vector. Consider the body K ′ that
is rotationally symmetric about w and has the same
(d−1)-dimensional volume for every cross section Kr =
{x : x ∈ K,wTx = r}, i.e., vold−1(Kr) = vold−1(K ′r).
K ′ is referred to as the Schwarz rounding of K in [10].



K ′ has the same mean as K, and also the same min and
max as K when we consider the projection along w, but
K ′ will be easier to analyze. Denote the radius of the
(d− 1)-dimensional ball K ′r by radius(K ′r). That K ′ is
convex follows from the Brunn-Minkowski inequality

voln((1−λ)A+λB)1/n ≥ (1−λ)voln(A)1/n+(λ)voln(B)1/n

where A and B are convex bodies in Rn, 0 < λ <
1, and + denotes the Minkoski sum. Proofs of this
inequality can be found in both [9] and [10]. To see
the implication of the theorem from the inequality, let
A,B be two cross sections of K, A = Kr1 , B = Kr2 and
consider the cross-section K(r1+r2)/2. By convexity of
K, 1

2A+ 1
2B ⊂ K(r1+r2)/2, and therefore

vold−1(K(r1+r2)/2)1/(d−1) ≥
1
2
vold−1(Kr1)1/(d−1) +

1
2
vold−1(Kr2)1/(d−1)

This implies that radius(K ′(r1+r2)/2) ≥
1
2radius(K

′
r1) + 1

2radius(K
′
r2), which yields that

K ′ is convex.
Let radius(K ′0) = R, and let [maxwT (x − x̄)] =

r0. Then radius(K ′r) ≥ R(1 − r
r0

) for r ∈ [0, r0] by
convexity. Similarly, radius(K ′r) ≤ R(1− r

r0
) for r < 0

by convexity. Using our assumption that the center of
mass coincides with the origin, we can derive that the
least possible value for r1 = [maxwT (x̄−x)] is given by∫ r1
r=0

r(1 + r
r0

)d−1dr =
∫ r0
r=0

r(1− r
r0

)d−1dr which yields
r1 = r0

d .

C Justification for Definition of F

We justify here that for F and D defined as in section
5, F is exactly the set of vectors such that ti ≤ ε.

Let di be a fixed unit vector. We first show that
ti > ε ⇒ di /∈ F . Let w′ ∈ M̃ be a point realizing the
maximum ti. Every d′i ∈ D must make w′ infeasible,
and so every d′i ∈ D is more than ε away from di (by
more than ε away, we mean that the sine of the angle
between d′i and di is at least ε). Thus di /∈ F . Now we
show that ti ≤ ε ⇒ di ∈ F . The proof uses that M̃
is a convex cone. Let w′ ∈ M̃ be a point that realizes
the maximum ti, ti ≤ ε. We claim that rotating the
hyperplane di in the direction of w′ by the amount ti
will make M̃ empty (and thus di is within ε of d′i ∈ D).
Another way to say this is that d′i = di/|di|+ tiw

′/|w′|
is in D. It is clear that d′i is within ti of di (i.e., the
sine of the angle between di and d′i is ti). To verify
that d′i ∈ D, suppose it were not true, i.e., there were
some point w̃ ∈ M̃ that is feasible for the rotated
hyperplane d′i. Then we show that w̃ and w′ define
a cone containing some point (also in M̃) more than ti
away from the unrotated di (i.e., the sine of the angle

between the constructed point and di is more than ti).
This will contradict our assumption about ti equaling
max{−d

T
i w
′

|di||w′| : w′ feasible for M̃}. Let −d′Ti w̃ = c > 0
(since w̃ is feasible for d′i), and construct p = αw̃ + w′.
Because M̃ is a convex cone, p ∈ M̃ . We seek to find
α > 0 such that −d

T
i p

|di||p| > ti. We expand the left hand
side of the desired inequality as

−dTi p
|di||p|

=
−(d′i − tiw′/|w′|)T (αw̃ + w′)√

α2w̃2 + 2αw̃Tw′ + |w′|2

=
αc+ αtiw̃

Tw′/|w′|+ ti|w′|√
α2w̃2 + 2αw̃Tw′ + |w′|2

≥ αc+ αtiw̃
Tw′/|w′|+ ti|w′|

α2w̃2/(2|w′|) + αw̃Tw′/|w′|+ |w′|

We see that as α approaches 0, but before α reaches
0, the quantity on the right-hand side of the above
expression is strictly greater than ti. This completes
the argument that ti ≤ ε⇒ di ∈ F .

D Proof that Small Boundaries are Easily
Missed

Before proving lemma 4.1, we prove fact D.1, which will
be useful in proving lemma 4.1.

Fact D.1. (Surface Area of a Convex Body)

Let A be a convex body in Rd, A ⊂ B. Denote the
boundary of a region R by ∆(R). Then

vold−1(∆(A)) ≤ vold−1(∆(B))

Proof. Because A is convex, we can imagine transform-
ing B into A by a series of hyperplane cuts, where on
each such cut we throw away everything from B on one
side of the hyperplane. The surface area of B strictly
decreases after each cut, until finally B equals A.

We restate lemma 4.1 and then prove it.

Lemma D.1. (Small Boundaries are Easily Missed)

Let K be an arbitrary convex body, and let ∆(K, ε)
denote the ε-boundary of K, i.e.,

∆(K, ε) = {x : ∃x′ ∈ K, |x− x′| ≤ ε} \K

Let g be chosen according to a d-dimensional Gaussian
distribution with mean ḡ and variance σ2, g ∼ N(ḡ, σ).
Then

Pr[g ∈ ∆(K, ε)] = O

(
ε
√
d

σ

)



Proof. This bound is tight to within a factor of Θ(
√
d),

as can be seen from letting K be a hyperplane passing
through ḡ. For the proof, we divide space into thin shells
of a hypersphere (like an onion) centered at ḡ. We then
argue that we are likely to land in a shell where we are
about as likely to be in any one part of the shell as any
other. Furthermore, in this shell, ∆(K, ε) can’t be more
than a small fraction of the overall volume of the shell.

Without loss of generality, let ḡ be the origin. Recall
that the probability density function of g is given by

µ(x) =
(

1/
√

2π
)d
e−|x|

2/2

As before, let ∆(X) denote the boundary of the region
X. Fix γ > 0.
Let SR = {x : R ≤ |x| ≤ (1 + γ

d )R}.
We would like to be able to argue that, if ∆(K, ε)

is a small fraction of the volume of SR, then if we
condition on g landing within SR, we are unlikely to
land in ∆(K, ε). The concept of bias allows us to make
this argument. Define the bias of a region X by

bias(X) =
maxx∈X µ(x)
minx∈X µ(x)

Then we can say that, for any Y ⊂ X,

Pr[g ∈ Y |g ∈ X] ≤ vol(Y )
vol(X)

· bias(X)

For SR, we calculate

bias(SR) =
e−R

2/σ2

e−(1+γ/d)2R2/σ2 = e(2γ/d+γ2/d2)R2/σ2

We upper bound the probability of landing in ∆(K, ε)
using

Pr[g ∈ ∆(K, ε)|g ∈ SR] ≤ vol(∆(K, ε) ∩ SR)
vol(SR)

· bias(SR)

Let B be a ball of radius (1 + γ
d )R. Let K ′ be the

convex closure of ∆(K, ε) ∩ SR. Clearly K ′ ⊂ B. We
can upper bound vol(∆(K, ε)∩SR) by ε·vold−1(∆(K ′)),
and by fact D.1, this is at most ε ·vold−1(B). The exact
formulas for the volume and surface area of a sphere are

vol(SR) =
2((1 + γ

d )R)dπd/2

dΓ(d/2)
− 2Rdπd/2

dΓ(d/2)

vold−1(B) =
2((1 + γ

d )R)d−1πd/2

Γ(d/2)

which yields

vol(∆(K, ε) ∩ SR)
vol(SR)

bias(SR) ≤

dε

R
·

(1 + γ
d )d−1

(1 + γ
d )d − 1

· e
γ
d (1+γ/d)2(2+γ/d)R2/σ2

To complete the proof, we sum over all the possible
shells SR that g might land in. This is done in the
following formula.

Pr[g ∈ ∆(K, ε)] ≤
∑

k,R=(1+ γ
d )k

Pr[g ∈ ∆(K, ε) | g ∈ SR] Pr[g ∈ SR]

≤
∑

k,R=(1+ γ
d )k

Pr[g ∈ SR]·dε
R
·

(1 + γ
d )d−1

(1 + γ
d )d − 1

·e
γ
d (1+γ/d)2(2+γ/d)R2/σ2

≤ E{g,|g|=σ√cd}

[√
dε√
cσ
·

(1 + γ
d )d

(1 + γ
d )d − 1

· eγ(1+γ/d)4(2+γ/d)c

]
We use the identity

Eg[f(g)] =
∫∞
x=0

Prg[f(g) > x]dx to upper bound that

last expectation. Also, let 1/γ1 = (1+ γ
d )d

(1+ γ
d )d−1

and let
γ2 = γ(1+γ/d)4(1+γ/(2d)). Then that last expectation
is just

√
dε

σγ1
E[ 1√

c
e2γ2c]. We compute the upper bound as

follows:

E[
1√
c
e2γ2c] =

∫ ∞
x=0

Pr
{g,|g|=σ

√
cd}

[
1√
c
e2γ2c > x]dx

=
∫ ∞
x=0

Pr[
1√
c
e2γ2c > x, c ≥ 1] + Pr[

1√
c
e2γ2c > x, c < 1]dx

≤
∫
x

Pr[e2γ2c > x and c ≥ 1] + Pr[
1√
c
e2γ2 > x and c < 1]dx

=
∫ ∞
x=e2γ2

Pr[e2γ2c > x]dx+
∫ ∞
x=e2γ2

Pr[
1√
c
e2γ2 > x]dx

=
∫ ∞
x=e2γ2

Pr[c >
lnx
2γ2

]dx+
∫ ∞
x=e2γ2

Pr[c <
e4γ2

x2
]dx

≤
∫ ∞
x=e2γ2

e
d
2 (1−c′+ln c′)|c′= ln x

2γ2
dx+

∫ ∞
x=e2γ2

e
d
2 (1−c′+ln c′)|

c′= e4γ2
x2

dx

≤
∫ ∞
x=e2γ2

e(1−c′+ln c′)|c′= ln x
2γ2
dx+

∫ ∞
x=e2γ2

e(1−c′+ln c′)|
c′= e4γ2

x2
dx

Where on the last step we observe that 1− c′+ ln c′ ≤ 0
and we assume that d ≥ 2. We now proceed to analyze
the right-hand term.∫ ∞
x=e2γ2

e(1−c′+ln c′)|
c′= e4γ2

x2
dx ≤

∫ ∞
x=e2γ2

e1+ln c′ |
c′= e4γ2

x2
dx

= e

∫ ∞
x=e2γ2

e4γ2

x2
dx

= e2γ2+1

For the lefthand term we make the change of variables



x = e2γ2α. Continuing:∫ ∞
x=e2γ2

e(1−c′+ln c′)|c′= ln x
2γ2
dx =

∫ ∞
α=1

e1−α+lnα2γ2e
2γ2αdα

= 2γ2e

∫ ∞
α=1

αe(2γ2−1)αdα

= 2γ2e

[
α

2γ2 − 1
e(2γ2−1)α − 1

(2γ2 − 1)2
e(2γ2−1)α

]∞
α=1

(since γ2 < 1/2) = 2γ2e
2γ2

[
1

(2γ2 − 1)2
− 1

2γ2 − 1

]
Our final bound on Pr[g ∈ ∆(K, ε)] is thus

√
dε

σ

e2γ2

γ1

(
e+

4(γ2 − γ2
2)

(2γ2 − 1)2

)
Letting γ = .1, we derive that this is at most 45

√
dε
σ .

As d increases, the constant quickly drops off. This
concludes the lemma proof.

We thank Ryan O’Donnell for directing us to two
previously published proofs of this fact in the literature,
[11], [12]. In those proofs, the constant 45 is replaced
by 1. Additionally, [11] proves the stronger statement
that

Theorem D.1. (K. Ball)

Pr[g ∈ ∆(K, ε)] ≤ 4
(
εd1/4

σ

)
It is straightforward to use this stronger bound to

obtain our main theorem with Õ(m
2d2.5

σ2δ2 ) in place of
Õ(m

2d3

σ2δ2 ). Additionally, Ryan O’Donnell communicated
to us that F. Nazarov has proved a matching lower
bound for theorem D.1.


