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Abstract. We study Euclidean embeddings of Euclidean metrics and
present the following four results: (1) an O(log3 n

√
log logn) approxima-

tion for minimum bandwidth in conjunction with a semi-definite relax-
ation, (2) an O(log3 n) approximation in O(nlogn) time using a new con-
straint set, (3) a lower bound of Θ(

√
logn) on the least possible volume

distortion for Euclidean metrics, (4) a new embedding with O(
√

logn)
distortion of point-to-subset distances.

1 Introduction

The minimum bandwidth problem asks for a permutation of the vertices of an
undirected graph that minimizes the maximum difference between the endpoints
of its edges. This maximum difference is called the bandwidth. Minimizing the
bandwidth is NP-hard [5].

The question of finding good approximations to the minimum bandwidth has
led to two different Euclidean embeddings of graphs. One of them is obtained
as a solution to a semi-definite relaxation of the problem [1]. The other is an
embedding that preserves tree volumes of subsets of a given metric [3, 4]. The
tree volume of a subset is the product of the edge lengths of a minimum spanning
tree of the subset. These two embeddings were used in separate approximation
algorithms.

In this paper we combine the two embeddings to obtain an improved approx-
imation. The quality of the approximation is O(ρ log2.5 n) where ρ is the best
possible volume distortion (defined in section 2) of a Euclidean metric. Using
Rao’s upper bound [6] of O(

√
log n log log n) on ρ we obtain an approximation

guarantee of O(log3 n
√

log log n) which improves on [4] by a factor of Θ(
√

log n).
Our approach immediately leads to the question of whether a better up-

per bound is possible. In section 5, we show a lower bound of Ω(
√

log n) on
the volume distortion even for the path graph. Thus further improvements to
bandwidth approximation will have to come from other avenues.

We then turn to the general question of embedding metrics in Euclidean
space. Finding an embedding of a metric that “preserves” properties of the orig-
inal metric is a classical problem. A natural property to consider in this regard
is the original distance function itself. J. Bourgain [2] gave an embedding that
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achieves a distortion of O(log n) for any metric on n points, i.e. the distance
between points in the embedding is within a factor of O(log n) of their distance
in the metric. In other words, it “preserves” distances any point and any an-
other point. A natural generalization would be an embedding that preserves the
distance between any point and any subset of points. The distance of a point u
to a subset of points S, is simply the distance of u to the closest point in S. For
a Euclidean embedding, the distance of a point u to a subset S can be defined
as the Euclidean distance from u to the convex hull of S. Thus point-to-subset
distance is a direct generalization of point-to-point distance for metrics as well
as for points in Euclidean space. In section 6, we give an embedding whose point-
to-subset distortion is O(

√
log n) for any Euclidean metric where the shortest

distance is within a poly(n) factor of the longest distance.
Replacing “convex” in the definition above by “affine” leads to another in-

teresting property. In section 6 we observe that for any Euclidean embedding,
the distortion of affine point-to-subset distances is also an upper bound on its
volume distortion. In section 7, we formulate a new system of constraints that
are separable in O(nlogn) time, and which result in an O(log3 n) approximation
to the minimum bandwidth using the results of section 6. We conclude with
the conjecture that our embedding (section 6.1) achieves the optimal volume
distortion for Euclidean metrics.

2 Euclidean Embeddings of Metrics

Let G = (V,E) be a finite metric with distance function d(u, v). We restrict
our attention throughout the paper to Euclidean embeddings φ of G that are
contractions, i.e. the distances between embedded points are at most the origi-
nal distances. As mentioned in the introduction, the distortion of a contraction
embedding, φ(G), is

max
u,v∈V

d(u, v)
|φ(u)− φ(v)|

where | · | is the Euclidean distance (L2 norm). A Euclidean metric on n points is
a metric that is exactly realizable as the distances between n points in Euclidean
space.

The Tree Volume (Tvol) of a metric is the product of the edge lengths of the
minimum spanning tree. A subset S of a metric also induces a metric, and its
tree volume, Tvol(S) is the product of the edges of the minimum spanning tree
of the metric induced by S.

The Euclidean Volume (Evol) of a subset of points {x1, . . . , xk} in some
Euclidean space is the volume of the (k − 1)-dimensional simplex spanned by
the points.

Definition 1. The k-volume distortion of a contraction embedding φ is de-
fined as

max
S⊆V,|S|=k

(
Tvol(S)

(k − 1)!Evol(φ(S))

) 1
k−1
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Remark. The factor (k − 1)! in the denominator is a normalization that
connects volume of a simplex to volume of a parallelepiped. The distortion as
defined above is within a factor of 2 of the distortion as defined in [3, 4]. We find
it unnecessary to go through the notion of “best possible volume” (Vol) used
there.

The following theorem, due to Rao [6], connects the tree volume with Eu-
clidean volume for the special case of Euclidean metrics.

Theorem 1. For any Euclidean metric G, there exists a Euclidean embedding
φ(G) whose k-volume distortion is O(

√
log n log log n) for all k up to log n.

3 A Semi-Definite Relaxation

To arrive at the semi-definite relaxation of [1], we can start by imagining that
the points of the graph are arranged along a great circle of the sphere at regular
intervals spanning an arc of 90 degrees as in Figure 1. This is our approximation
of laying out all the points on a line, and it is good to within a factor of 2. We relax
this to allow the points to wander around the sphere, but maintaining that no two
lie more than 90 degrees apart, and that they satisfy the “spreading” constraints.
The objective function for our relaxation is to minimize the maximum distance
between any pair of points connected by an edge in the original graph. We now
give the SDP explicitly, where G = (V,E) is our original graph. Note that G
does not neccesarily induce a Euclidean metric, but the solution to the SDP
below, where the vectors correspond to vertices of G, does induce a Euclidean
metric. It is shown in [1] that this is a relaxation and that it can be solved in
polytime.

Fig. 1. Not quite points on a line, but close.

min b

ui · uj ≥ 0 ∀i, j ∈ V
|ui| = n ∀i ∈ V

|ui − uj | ≤ b ∀(i, j) ∈ E∑
j∈S

(ui − uj)2 ≥ 1
12
|S|3 ∀S ⊆ V,∀i ∈ V
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4 A Rounding Algorithm

Let the Euclidean embedding obtained by solving the relaxation be U = {u1, . . . , un}.
The algorithm below rounds this solution to an ordering of the vertices of G.

1. Find a volume respecting embedding of U , φ(U) = {v1, . . . , vn}, using Rao’s
algorithm [6] with k = log n.

2. Pick a random line ` passing through the origin.
3. Project the points of the embedding φ(U) to ` and output the ordering

obtained.

Denote the dimension of the embedding φ(U) by d. Upon random projection,
edge lengths shrink by a factor of 1√

d
in expectation. To analyze the quality of

the approximation we obtain, we show that every edge shrinks by at least a

factor of
√

logn√
d

, and that not too many points fall in any interval of length 1√
d
.

To show that no more than m points fall in an interval, we show that no more
than

(
m
k

)
sets of k points fall in the interval.

We will use the following lemmas. Lemma 1 is from [4] and lemmas 2 and 3
are from [7].

Lemma 1. ∑
S⊂U,|S|=k

1
Tvol(S)

≤ n(log n)k−1

Lemma 2. Let v ∈ IRd. For a random unit vector `,

Pr
[
|v · `| ≤ c√

d
|v|
]
≥ 1− e−c

2/4.

Lemma 3. Let S be a set of vectors v1, . . . , vk ∈ IRd. For a random unit vector
`

Pr [maxi{vi · `} −mini{vi · `} ≤W ] = O

(
W k−1d

k−1
2

(k − 1)!Evol(S)

)
Lemma 4. After random projection, the number of vertices that fall in any
interval of length 1√

d
is O(ρ log2 n), where ρ is the k-volume distortion of the

embedding.

Proof. Consider an interval of length W = 1√
d
. For a subset S of V , let XS

be a random variable that is 1 if all the vectors in S fall in the interval. Let us
estimate the total number of sets S of size k that fall in the interval.

E

∑
|S|=k

XS

 =
∑
|S|=k

E[XS ] (1)

=
∑
|S|=k

Pr(XS = 1)
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≤
∑
|S|=k

W kd
k
2

(k − 1)!Evol(S)
(2)

=
∑
|S|=k

1
(k − 1)!Evol(S)

≤
∑
|S|=k

(ρ)k−1

Tvol(S)
(3)

≤ (ρ)k
∑
|S|=k

1
Tvol(S)

≤ (ρ)kn(log n)k (4)
≤ (2ρ log n)k (5)

Step 2 is from lemma 3, step 3 is an application of theorem 1, step 4 is from
lemma 1, and step 5 follows from k = log n.

We need to consider only O(n
√

log n) intervals of length 1√
d

(the longest
distance is O(n) originally, and by lemma 2, it maps to a distance of at most
O(n
√

log n) with high probability). Now by Markov’s inequality, with high prob-
ability, the number of k subsets that fall in any interval of length 1√

d
is at most

n2(2ρ log n)k ≤ (8ρ log n)k. Thus if the number of points in such an interval is m
then

(
m
k

)
≤ (8ρ log n)k which implies that m = O(ρ log2 n) (using k = log n). ut

Theorem 2. The algorithm finds an O(ρ log2.5 n) = O(log3 n
√

log log n) ap-
proximation with high probability.

Proof. Consider an edge (i, j) in the original graph that is mapped to vectors
vi and vj after the volume-preserving embedding. Then max(i,j)∈E |vi − vj | is a
lower bound on the bandwidth of the graph (the distance between the solution
vectors of the SDP is a lower bound and this distance is only contracted during
the volume-preserving embedding).

After the last step, with high probability the distance between the projections

of vi and vj is at most O(
√

logn√
d
|vi − vj |) for every pair (i, j) (lemma 2).

Thus the maximum number of intervals of length 1√
d

any edge (i, j) can span
along the random line is O(

√
log n · |vi − vj |). Along with lemma 4 this implies

that the bandwidth of the final ordering is O(ρ log2.5 n) times the optimum with
high probability. ut

5 A Lower Bound on Volume Distortion

Our bandwidth algorithm and its analysis motivate the question of whether there
are embeddings with better volume distortion. In this section we show that even
for a path on n vertices, the best possible volume distortion is Ω(

√
log n). Thus a

further improvement in bandwidth approximation will have to come from other
sources.
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Theorem 3. Let G be a path on n vertices. Then for any Euclidean embedding
of G, the distortion for subsets of size up to k is Ω((logn)1/2−1/k). For k =
Ω(log log n), the distortion is Ω((log n)1/2).

We begin by proving that the distortion is Ω(( logn
log logn )1/4) for subsets of size

3.
Proof of weaker bound. Let our embedding map {u1, ...un} to {φ(u1), ..., φ(un)}

and let P1 = φ(u1), P2 = φ(u2), P3 = φ(u3). We will show a tradeoff between
the area of {P1, P2, P3} and the length of P1P3. Applying this recursively will
yield the claimed bound.

Let |P1P2| = |P2P3| = 1 and let the perpendicular distance from P2 to P1P3

be d. Let |P1P3| = 2c. The area of the triangle is dc and the Pythagorean identity
yields 1 = d2 + c2. Assume that β is an upper bound on the 3-volume distortion
of any subset of three points in our embedding. Then(

1
2dc

)1/2

=
(

Tvol(S)
(k − 1)!Evol(φ(S))

) 1
k−1

≤ β

and since c ≤ 1, we find d ≥ 1
2β2 .

Using the Pythagorean identity, this implies c =
√

1− d2 ≈ 1 − d2/2 ≤ 1 −
1

8β4 . Thus every distance between two points φ(ui), φ(ui+2) is at most 2·(1− 1
8β4 ).

Now we apply the same argument to subsets of three points at distance 2 apart,
{φ(ui), φ(ui+2), φ(ui+4)}. We obtain that the distance between φ(ui) and φ(ui+4)
is at most 4 · (1 − 1

8β4 )2. Continuing this analysis, we find that the distance
|φ(u1)− φ(un)| is at most n · (1− 1

8β4 )logn.
However, our assumption that we have distortion at most β implies |φ(u1)−

φ(un)| ≥ n/β. Thus we have

n · (1− 1
8β4

)logn ≥ n/β

implying β ≥
(

logn
log logn

)1/4

. ut
Proof of Stronger Bound. Consider the volume of {P1, ...Pk}, and assume

without loss of generality that ∀i, |PiPi+1| = 1. Now let ci = 1
2 |PiPi+2|, and di =

orthogonal distance from Pi+1 to PiPi+2. We first claim that Evol(P1, ...Pk) ≤∏k−2

i=1
(2di)

(k−1)! . The proof is by induction. Our base case is Evol(P1, P2) ≤ 1, which

is clear. Assume that Evol(P1, ...Pj) ≤
∏j−2
i=1 (2di)/(j − 1)! and consider Pj+1.

We have that the midpoint of Pj−1Pj+1 is dj−1 away from Pj . This implies that
Pj+1 is no more than 2dj−1 away from the subspace spanned by {P1, ...Pj}. The
claim follows. Our new bound on the {di} follows from

(
1∏k−2

i=1 di

) 1
k−1

≤
(

Tvol(S)
(k − 1)!Evol(φ(S))

) 1
k−1

≤ β
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and the bound is
∑k−2

i=1
2d2
i

k−2 ≥ (
∏k−2
i=1 2d2

i )
1
k−2 ≥ 1

2β
−2( k−1

k−2 ) where the first
inequality follows from the arithmetic mean-geometric mean inequality. As be-
fore, we have ci ≤ 1 − d2

i /2. Since |P1Pk| ≤ 2(c1 + c3 + ...ck−3 + 1) and
|P1Pk| ≤ 2(1 + c2 + c4 + ...ck−2), we find that |P1Pk| ≤ 2 +

∑k−2
i=1 ci = (k −

1)( k
k−1 −

k−2
k−1

∑k−2

i=1
d2
i

2(k−2) ) ≈ (k−1)(1−
∑k−2

i=1
d2
i

2(k−2) ). Our bound on the length of P1Pk

becomes |P1Pk| ≤ (k−1)( k
k−1 −

k−2
k−1

1
8β
−2 k−1

k−2 ). Now we apply our recursive con-
struction again, this time on sets of size k at a time. Since we are no longer just
doubling each time, we can apply our analysis only logk n times. Plugging this
in yields the bound (

k

k − 1
− k − 2
k − 1

1

8β2( k−1
k−2 )

) logn
log k

≥ 1
β

which simplifies to log n ≤ 16(log k)β2(1+ 1
k−2 ) log β, implying β ≥ (log n)(1/2−1/k).

ut

6 Embeddings Preserving Point-To-Subset Distances

The distance of a point (or vertex) u of G to a subset of points S is simply
d(u, S) = minv∈S d(u, v). For points in Euclidean space, let us define the distance
of a point u to a set of points S as the minimum distance from u to the convex
hull of S, which we denote with the natural extension of | · |. We denote the
convex hull of a set of points S by conv(S), and the affine hull by aff(S).

Definition 2. The point-to-subset distortion of an embedding φ(G) is

max
u∈V,S⊂V

d(u, S)
|φ(u)− conv(φ(S))|

In this section we investigate the question of the best possible point-to-subset
distortion of a Euclidean metric. Besides its geometric appeal, the question has
the following motivation. Suppose we replaced “convex” in the definition above
by “affine” and called the related distortion the affine point-to-subset distortion.
Then we would have the following connection with volume distortion.

Lemma 5. Let φ(G) be a contraction embedding of a metric G. Then the affine
point-to-subset distortion is an upper bound on the k-volume distortion, for all
2 ≤ k ≤ n.

Proof of lemma 5. Consider a set S of vertices inG, and a mimimum spanning
tree T of S. Consider any leaf u of T . If the point-to-subset distortion of our
embedding φ is β, then

d(u, S \ {u}) ≤ β|φ(u)− aff(φ(S \ {u}))|
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Proceeding inductively, we find that

Tvol(S) ≤ βk−1(volume of parallelepiped defined by φ(S))

≤ βk−1(k − 1)!Evol(φ(S))

ut
We now state our main theorem on point-to-subset distortion. In the next

two subsections, we define the embedding, and then prove that the embedding
satisfies the theorem.

Theorem 4. For any Euclidean metric G where the shortest distance is within
a poly(n) factor of the longest distance, there exists a Euclidean embedding φ(G)
whose point-to-subset distortion is O(

√
log n).

6.1 The Embedding

Let G = (V,E) be a Euclidean metric with distances (edge lengths) d(u, v) for
all pairs of vertices u, v ∈ V . We assume that all the distances lie between 8 and
8n. (Any polynomial upper bound on the ratio of the shortest to the longest
distance would suffice). Since G is Euclidean, we can assume without loss of
generality that the vertices are points in some d-dimensional Euclidean space.
Given only the distances, it is trivial to find points realizing the distances by
solving an SDP. The embedding we now describe was inspired by the work of
Rao [6].

Before defining the embedding in general, let us consider the following illus-
trative example. Suppose that d = 1, i.e., all the points lie on a line. In this
case, we could proceed by generating coordinates according to the following ran-
dom process: for each R in the set {1, 2, 22, . . . , 2blognc}, we repeat the following
procedure N times: choose each point from the subset {1, . . . , 8n} with prob-
ability 1/R for inclusion in a set S, and come up with a coordinate φS(v) for
every v ∈ V . The coordinate φS(v) is defined to be minw∈S |v − w|, and then
φ(v) is the vector given by the set of coordinates for v. This will yield N log n
coordinates.

We now explain why this yields a
√

log n affine point-to-subset distortion.
This is a stronger property than

√
log n point-to-subset distortion, and it will

only be proved for d = 1. Consider a set U ⊂ V and a point u, with distance
on the line d(u, U). For every S, we have that |φS(u) − aff(φS(U))| ≤ d(u, U),
and it is a simple application of Cauchy-Shwarz to get that |φ(u)− aff(φ(U))| ≤
d(u, U)

√
N log n. To obtain a lower bound of Ω(d(u, U)

√
N), we consider the

largest R such that R ≤ d(u, U). Denote this value of R by r; we now show
that with constant probability, a set S chosen by including points in S with
probability 1

r yields |φS(u) − aff(φS(U))| = Ω(d(u, U)). We get this from the
following view of the random process: fix some particular affine combination
aff0, pick points for inclusion in S at distances in (d(u, U)/2, d(u, U)) to the left
and to the right of u, pick the rest of the points not near u with probability 1

r , and
we still have constant probabilty of picking another point within the two points
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bracketing u; the variation in |φS(u) − aff0(φS(U))| due to the distinct choices
for this last point included in S is Ω(d(u, U)) with constant probability. Feige
proves [4] that the number of “distinct” affine combinations is not too great,
and thus taking N sufficiently large, but still polynomial, yields that this occurs
with high probability simultaneously for all “distinct” affine combinations, and
thus over the uncountable set of all affine combinations. Taking N a little bit
larger still (but still polynomial) then yields that this is simultaneously true for
all point-subset pairs.

For the general case (d ≥ 1), our algorithm chooses a random line, projects
all the points to this random line, and then computes the coordinates as above.
In detail, for each R in the set {1, 2, 22, . . . , 2blognc}, we repeat the following
procedure N times:

1. Pick a random line ` through the origin.
2. Project all the points to `, and scale up by a factor of

√
d. Let the projection

of u be u`.
3. Place points along ` at unit intervals. Pick a random subset S of these points,

by choosing each point with probability 1
R , independently.

4. The coordinate for each vertex u along the axis corresponding to the S and
` pair is φS(u) = d(u`, S) = minw∈S |u` − w|.

Thus the total number of dimensions is O(N log n). For the same reasons as
cited above, N = poly(n) will suffice. Thus the dimension of the final embedding
is polynomial in n.

6.2 The Proof

We first upper bound the point-to-subset distances in our final embedding. Con-
sider any point u and subset U . It is enough to consider the point v ∈ U mini-
mizing d(u, v) by the following lemma.

Lemma 6. For every pair u, v ∈ V ,

|φ(u)− φ(v)| ≤ 2d(u, v)
√
N log n

Proof. After scaling up by a factor of
√
d, we have that for any pair u, v ∈ V ,

|φ(u)− φ(v)|2 =
∑
(S,`)

|φS(u)− φS(v)|2

=
∑
(S,`)

|d(u`, S)− d(v`, S)|2

≤
∑
(S,`)

d(u`, v`)2

≤
∑
(S,`)

2d(u, v)2 (6)

= d(u, v)2N log n
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where step 6 is true with constant probability for a single random line, and with
very high probability when summing over all the random lines. ut

Since |φ(u)− conv(φ(U))| ≤ |φ(u)− φ(v)|, v ∈ U , we have our upper bound.
Now we lower bound the point-to-subset distances. Consider again a partic-

ular point u and subset U = {ui}, and some fixed convex combination {λi} such
that

∑
λi = 1 and ∀i, λi ≥ 0. Let r be the highest power of 2 less than d(u, U).

For any coordinate corresponding to a subset S generated using R = r, we show
that |φ(u)−

∑
i λiφ(ui)| = Ω(d(u, U)) with constant probability.

Towards this goal, we claim there is a constant probability that the following
two events both happen.

(i)
∑
i λiφS(ui) ≥ r/16

(ii) φS(u) ≤ r/32

First we condition on some point within r/32 of u` being chosen for inclusion in
S. This happens with constant probability (over choice of S). We have at least
a constant probability of the λi’s corresponding to ui’s at least r/4 away from
u adding up to at least 2/3 (over choice of `). Condition on this as well. Then
we lower bound the expected value of

∑
i λiφS(ui) by

E[
∑
i

λiφS(ui)] ≥
∑

i:|u`
i
−ui|≥r/4

λiE[φS(ui)]

Since E[φS(ui)] ≥ r/8, we have that the expectation is at least (2/3)(r/8) =
r/12. By Markov’s inequality, the value of

∑
i λiφS(ui) is at least r/16 with

constant probability.
Since this happens for all coordinates with R = r, i.e. N of the coordinates,

we obtain the lower bound. As before, a polynomially large N suffices to make
the statement true with high probability for every point, every subset, and every
convex combination simultaneously.

7 Convexity of kth Moments

In section 6.1, we proved that our embedding did preserve all affine point-to-
subset distances to within O(

√
log n) for the case d = 1. Since the optimal

solution to the bandwidth problem is an arrangement of points on a line, it
is the case that an embedding realizing this distortion of the optimal solution
exists. This implies that the constraint∑

|S|=k

1
Evol(S)

≤
∑
|S|=k

(k − 1)!ρk

Tvol(S)
≤ (2ρk log n)k

with ρ =
√

log n is satisfied by a Euclidean embedding of the optimal solution.
We call this constraint the kth moment constraint. We show in this section that
the above constraint is convex, and thus we can impose it explicitly in our
SDP (replacing the spreading constraint), separate over it, and then apply the
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machinery of section 4 with ρ =
√

log n to obtain an O(log3 n) approximation
to the optimal bandwidth. The only caveat is that the constraint has

(
n
k

)
=

O(nlogn) terms, so this is not quite a polynomial time algorithm. We proceed
with

Lemma 7. Let c be fixed. The following is a convex constraint over the set of
Postive Semi-Definite (PSD) matrices X.∑

|S|=k

1
Evol(XS)

≤ c

Proof. We analyse the constraint given in the lemma on a term by term basis.
Suppose X and Y are PSD matrices, and (X+Y )/2 is their convex combination.
Then it suffices to show that

1
Evol((X + Y )/2)

≤ 1
2

(
1

Evol(X)
+

1
Evol(Y )

)
because the constraint in the lemma statement is just a sum over many subma-
trices. We actually prove the stronger statement that

1
Evol((X + Y )/2)

≤

√
1

Evol(X)
1

Evol(Y )

which implies the former statement by the arithmetic mean-geometric mean in-
equality (GM≤ AM). This last statement is equivalent to (clearing denominators
and squaring twice)

Det(XY ) ≤ Det2((X + Y )/2)

which is equivalent to

1 ≤ Det2((X + Y )/2)
Det(XY )

= Det(
1
4

(X + Y ))Det(X−1)Det(X + Y )Det(Y −1)

= Det(
1
4

(X + Y )(X−1)(X + Y )(Y −1))

= Det(
1
4

(I + Y X−1)(XY −1 + I))

= Det(
1
4

(Y X−1 + 2I +XY −1))

= Det(
1
4

(A+ 2I +A−1))

where we let A = Y X−1 at the very end. Also let B = A+2I+A−1

4 . We have re-
duced our original claim to showing that Det(B) ≥ 1. We will show the stronger
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property that every eigenvalue of B is at least 1. Consider an arbitrary (eigen-
vector, eigenvalue)-pair of A , given by (e, λ). Then

Be =
1
4

(λ+ 2 +
1
λ

)e

Since 1
4 (λ+ 2 + 1

λ ) ≥ 1, we have that e is an eigenvector of eigenvalue at least 1
for B (this used that λ ≥ 0, which is true since A is PSD). Since the eigenvectors
of A form an orthonormal basis of the whole space, all of B’s eigenvectors are
also eigenvectors of A. ut

8 Conclusion

We conjecture that the embedding described in section 6.1 has O(
√

log n) affine
point-to-subset distortion as well. This would directly imply that our algorithm
achieves an O(log3 n) approximation for the minimum bandwidth in polynomial
time.
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