
A Simple Polynomial-time Rescaling Algorithm

for Solving Linear Programs

John Dunagan

Microsoft Research

One Microsoft Way

Redmond, WA 98052

jdunagan@microsoft.com

Santosh Vempala

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139

vempala@math.mit.edu

Abstract

The perceptron algorithm, developed mainly in the machine learning literature, is a simple
greedy method for finding a feasible solution to a linear program (alternatively, for learning
a threshold function). In spite of its exponential worst-case complexity, it is often quite use-
ful, in part due to its noise-tolerance and also its overall simplicity. In this paper, we show
that a randomized version of the perceptron algorithm along with periodic rescaling runs in
polynomial-time. The resulting algorithm for linear programming has an elementary descrip-
tion and analysis.

1 Introduction

Linear programming problems arise in many areas. The standard form is

max cT x

Ax ≤ b

x ≥ 0

where b, c are in R
n, and A is an m×n matrix of reals. It is often convenient to view the constraints

as halfspaces in R
n and the problem is to find a point in their intersection of maximum objective

value. The dual view is to think of the rows of A as points in Rn, and then the goal is to find a
threshold function (i.e., a halfspace) that satisfies the given thresholds and maximizes the objective
threshold. Polynomial-time algorithms for solving linear programs include the ellipsoid method
[15, 17, 27, 24], interior point methods [16, 26] and the random walk method [2].

Another classical algorithm which is often used for problems arising in machine learning is the
perceptron algorithm [1, 18, 20]. It was developed to solve the problem of learning a half-space.
The algorithm is a simple greedy method that is guaranteed to converge to a feasible solution, if
one exists. It could take an exponential number of iterations in the worst case. Nevertheless, it has
many useful properties, including certain types of noise tolerance [4, 5]. It has also been related
to boosting in the PAC model of learning [22, 23]. It was recently shown that the algorithm is
polynomial with high probability for randomly perturbed linear programs [3]. It should be noted
that the algorithm is generally not considered efficient in practice. It has been an open question as to
whether there is a variant of the perceptron algorithm that is polynomial in the worst case. Besides

1

suggesting a useful modification to the basic algorithm in practice, it would give a noise-tolerant
(in a specific sense) polynomial-time algorithm.

We focus on the problem of finding a feasible solution to a given set of linear constraints.
Polynomial time reductions of the optimization problem to the feasibility version of the problem
are well-known [15]. A typical approach is described in Section 4.

In this paper, we show that a randomized perceptron-like algorithm along with periodic rescal-
ing applied to a feasible linear program will return a feasible point in polynomial time, with high
probability. It takes as input an arbitrary set of linear constraints and an additional parameter
δ and outputs the correct answer with probability at least 1 − δ. As in all variants of the per-
ceptron algorithm, it does not use any matrix inversions or barrier functions. Our main theorem
(Theorem 3.5) is that a strictly feasible linear program with m constraints in R

n is solved in time
O(mn4 log n log(1/ρ0) + mn3 log n log(1/δ)) where ρ0 is a parameter that roughly corresponds to
the radius of a ball that fits in the feasible region, and log(1/ρ0) is guaranteed to be bounded by
a polynomial in the input description. It should be noted that the complexity of our algorithm is
not as good as the current best algorithms [10, 26]. On the other hand, it is rather simple and
inherits the noise-tolerance properties of the perceptron algorithm. As a direct consequence, we get
a simpler (and faster) solution to the problem of learning noisy linear threshold functions [4, 6].

Here is the main idea. The perceptron algorithm maintains a halfspace that it updates using
a constraint that is currently violated. The convergence of the algorithm depends on a separation
parameter quantifying the amount of “wiggle room” available for a feasible halfspace. This is in
the dual view described above. In the corresponding primal view, when we think of constraints as
halfspaces, the wiggle room is the radius of the largest ball that fits in the feasible region. Roughly
speaking, the analysis of the perceptron algorithm says that if this ball is large, then the algorithm
will converge quickly. The work of [4] shows that even when this ball is small, a simple variant of
the perceptron algorithm finds a nearly feasible solution, i.e., constraints might be violated but each
is not violated by much. Here we show that when the wiggle room is small, such a nearly feasible
solution can be used to apply a linear transformation (in fact, a rank 1 update) that expands the
wiggle room (enlarges the ball contained in the feasible region) by roughly a 1 + 1/n factor. Thus,
in O(n) iterations, we either find a feasible point or double the wiggle room. The idea of scaling to
improve convergence appears in the work of Shor [25].

2 The Algorithm

In this section we present an algorithm for the linear feasibility problem

Ax ≥ 0, x 6= 0

consisting of m constraints in n dimensions, i.e. x ∈ R
n and A is m×n. In Section 4 we show how

well-known methods can be used to reduce the standard form to this homogenized form.
The algorithm is iterative and each iteration consists of three phases, a perceptron phase, a

perceptron improvement phase, and a rescaling phase. The perceptron phase uses the classical
perceptron algorithm. The perceptron improvement phase uses a modified version of the basic
perceptron algorithm. This modified version was described earlier in [4]. Figure 1 depicts the
rescaling phase.

The classical perceptron algorithm for the linear feasibility problem is the following: find a
violated constraint, move the trial solution x one unit in the direction normal to the violated

2

constraint, and repeat if necessary (this is step 2 in the algorithm).
In the rest of the paper, we let x̄ denote the unit vector in the direction of x.

3 Analysis

3.1 Ideas

Let A0 denote the initial matrix input to the algorithm, and let A∗ denote the matrix that the
algorithm terminates with. When the algorithm terminates, it produces a non-zero vector Bx such
that A∗x = (A0B)x ≥ 0, i.e., A0(Bx) ≥ 0, as desired.

During each outer iteration (Steps 2-7), the perceptron improvement phase (Step 4) may be run
a number of times, but it terminates quickly with high probability (Lemma 3.2). Thus the main
question is, how many iterations does the algorithm take? To answer this, we use the following
quantity which measures the “roundness” of the feasible region (introduced in [13, 14] as the inner
measure):

ρ(A) = max
x:||x||=1,Ax≥0

min
i

(āi · x)

where ai denotes the i’th row of A and āi is the unit vector along ai.

3

Algorithm.

Input: An m × n matrix A.
Output: A point x such that Ax ≥ 0 and x 6= 0.

1. Let B = I, σ = 1/(32n).

2. (Perceptron)

(a) Let x be the origin in R
n.

(b) Repeat at most 1/σ2 times:

If there exists a row a such that a · x ≤ 0, set x = x + ā.

3. If Ax ≥ 0, then output Bx as a feasible solution and stop.

4. (Perceptron Improvement)

(a) Let x be a uniform random unit vector in R
n.

(b) Repeat at most (lnn)/σ2 times:

If there exists a row a such that ā · x̄ < −σ, set x = x − (ā · x)ā.

If x = 0, go back to step (a).

(c) If there is still a row a such that ā · x̄ < −σ, restart at step (a).

5. If Ax ≥ 0, then output Bx as a feasible solution and stop.

6. (Rescaling)
Set A = A

(

I + x̄x̄T
)

and B = B
(

I + x̄x̄T
)

.

7. Go back to step 2.

−a1−a2

Feasible
region

x
z

xz

Figure 1: A constraint system before and after rescaling.

We call ρ the radius of A, and z, the unit vector that achieves the maximum, its center (this

4

might not be unique and any choice among the points achieving the maximum will do). Note that
ρ is just the radius of the largest ball that fits in the feasible cone, such that the center of the ball
is on the unit sphere. To avoid confusion, let ρ0 = ρ(A0) denote the roundness of the input. See
Section 4 for a further discussion of ρ.

The classical analysis of the perceptron algorithm [18] (repeated in Lemma 3.1) shows that
the classical perceptron algorithm (our perceptron phase) applied to a linear feasibility problem
with radius ρ will terminate in at most 1/ρ2 iterations. Further, it is not hard to see that if ρ is
initially more than 0, there exists a linear transformation that takes ρ arbitrarily close to 1. This
transformation is defined by A′ = A(I + νzzT). As ν → ∞, a simple calculation shows that ρ(A′)
goes to 1. So if we knew the transformation, we could just apply it once and then run the standard
perceptron algorithm!

However, this is equivalent to the original problem since z is a feasible point. Instead, in our
algorithm, we incrementally transform A using near-feasible solutions, so that ρ increases steadily.
Our main lemma shows that in any iteration of our algorithm where ρ is small, it will increase
in expectation by a multiplicative factor. Combining our main lemma with the classical analysis
will yield that if ρ is small, it gets bigger (guaranteed by the perceptron improvement and scaling
phases), and if ρ is big, the algorithm finds a feasible point (guaranteed by the perceptron phase).

Each iteration of the algorithm consists a perceptron phase and a perceptron improvement
phase. Alternatively, one could do just the perceptron improvement phase for a pre-determined
number of steps, and then check for completion by running the perceptron phase once.

3.2 Proofs

We begin with the well-known analysis of the standard perceptron algorithm.

Lemma 3.1 (Block-Novikoff [18]) The classical perceptron algorithm (our perceptron phase) re-
turns a feasible point in at most 1/ρ2 iterations.

Proof. Consider the potential function x · z/ ‖x‖. The numerator increases by at least ρ on each
step:

(x + āi) · z = x · z + āi · z ≥ x · z + ρ

While the square of the denominator increases by at most 1:

(x + āi) · (x + āi) = x · x + 2x · āi + āi · āi ≤ x · x + 1

since x · āi ≤ 0. After t iterations, the potential function is at least tρ√
t

and thus the classical

perceptron algorithm must terminate before 1/ρ2 iterations. If the algorithm terminates, it must
have found a feasible point. �

Next, we recall the analysis of the modified perceptron algorithm (our perceptron improvement
phase).

Lemma 3.2 (BFKV [4]) Let A be the constraint matrix at the beginning of a perceptron improve-
ment phase and let z be any unit vector such that Az ≥ 0. With probability at least 1/8, in at most

5

(lnn)/σ2 steps, the perceptron improvement phase returns a vector x such that both conditions below
hold:

(a) ā · x ≥ −σ for every row a of A

(b) z · x̄ ≥ 1√
n

.

Proof. The proof of both parts is similar. A standard computation shows that for a random unit
vector x, z · x̄ ≥ 1/

√
n with probability at least 1/8 (for a proof outline of this folklore fact, see the

appendix). We now show that if this is the case, we terminate in the desired number of iterations.
Note that in each update step, z · x does not decrease

(x − (x · āi)āi) · z = x · z − (x · āi)(āi · z) ≥ x · z

because x · āi had to be negative in order for āi to be used in an update step, and āi · z ≥ 0 by
assumption. (This also implies that if z · x ≥ 1/

√
n initially, x will never be set to zero.) On the

other hand x · x does decrease significantly because

(x − (x · āi)āi) · (x − (x · āi)āi) = x · x − 2(āi · x)2 + (āi · x)2

= x · x − (āi · x)2

≤ x · x(1 − σ2).

Thus after t iterations ‖x‖ ≤ (1 − σ2)t/2. If t > (lnn)/σ2, we would have x·z
‖x‖ > 1, which

cannot happen. Therefore, every time we start through this phase, with probability at least 1/8
we terminate and return a vector x for which

x · z
‖x‖ ≥ 1√

n
.

�

We are now ready to prove our main lemma about progress in any iteration that does not find
a feasible solution.

Lemma 3.3 Suppose that ρ, σ ≤ 1/(32n). Let A′ be obtained from A by one iteration of the
algorithm (one on which the problem was not solved). Let ρ′ and ρ be the radii of A′ and A
respectively. Then,

(a) ρ′ ≥ (1 − 1
32n − 1

512n2)ρ.

(b) With probability at least 1
8 , ρ′ ≥ (1 + 1

3n)ρ.

Proof. The analysis will use Lemma 3.2 which says that, with probability 1
8 , the vector x at the

end of step 4(b) satisfies ā · x̄ ≥ −σ for every constraint row a and z · x̄ ≥ 1/
√

n.
Let ai, i = 1, . . . m be the rows of A at the beginning of some iteration. Let z be a unit vector

satisfying ρ = mini āi ·z, and let σi = āi · x̄. After a perceptron improvement phase, we get a vector
x such that for all i,

āi · x̄ = σi ≥ −σ.

6

As in the theorem statement, let A′ be the matrix obtained after the rescaling step, i.e.

a′i = ai + (ai · x̄)x̄.

Finally, define
z′ = z + βx̄.

where β will be specified shortly. Although z ′ is not necessarily the center of A′, ρ′ is a maximum
over a set, and so considering one element (z̄ ′) of the set suffices to lower bound ρ′. We have

ρ′ ≥ min
i

ā′i · z̄′ = min
i

ā′i · z′
||z′|| .

We will first prove that ā′
i · z′ cannot be too small.

ā′i · z′ =

(

āi + (āi · x̄)x̄

‖āi + (āi · x̄)x̄‖

)

· z′

=
(āi + (āi · x̄)x̄)(z + βx̄)

√

1 + 3(āi · x̄)2

≥ ρ + (āi · x̄)(z · x̄) + 2β(āi · x̄)
√

1 + 3σ2
i

We choose:

β =
1

2
(ρ − (x̄ · z)).

We proceed to calculate

ā′i · z′ ≥ ρ
1 + σi

√

1 + 3σ2
i

≥ ρ
1 − σ√
1 + 3σ2

. (1)

where the second inequality follows from σi ∈ [−σ, 1]. Next, observe that

||z′||2 = 1 + β2 + 2β(x̄ · z) = 1 +
ρ2

4
+ (z · x̄)

(

ρ

2
− 3

4
(z · x̄)

)

.

We consider two cases:

1. |z · x̄| < 1√
n
. This happens with probability at most 7/8.

Viewing ||z′||2 as a quadratic polynomial in (z ′·x), we see that it is maximized when (z ′·x) = ρ
3 .

In this case, we have

||z′||2 ≤ 1 +
ρ2

4
+

ρ2

12
= 1 +

ρ2

3
.

Using the elementary inequality 1√
1+β

≥ 1 − β
2 for β ∈ (−1, 1), we find

ρ′ ≥ ρ
1 − σ√

1 + 3σ2||z′||

≥ ρ(1 − σ)(1 − 3σ2

2
)(1 − ρ2

6
)

≥ ρ(1 − σ − 3σ2

2
− ρ2

6
)

≥ ρ(1 − 1

32n
− 1

512n2
)

7

since σ, ρ ≤ 1/(32n).

2. |z · x̄| ≥ 1√
n
. This happens with probability at least 1/8.

In this case,

||z′||2 = 1 +
ρ2

4
+ (z · x̄)

ρ

2
− 3

4
(z · x̄)2 ≤ 1 − 3

4n
+

ρ

2
√

n
+

ρ2

4
.

Using the elementary inequality again, we find

ρ′ ≥ ρ(1 − σ)(1 − 3σ2

2
)(1 +

3

8n
− ρ

4
√

n
− ρ2

8
)

≥ ρ

(

1 − σ − 3σ2

2
+

3

8n
− 3σ

8n
− 9σ2

16n
− ρ

4
√

n
− ρ2

8

)

≥ ρ

(

1 +
1

3n

)

.

This proves both parts of the lemma. �

We can now bound the number of iterations. Recall that ρ0 = ρ(A0) is the ρ value for the initial
input matrix.

Theorem 3.4 For any δ ∈ [0, 1], with probability at least 1 − min{δ, e−n}, the algorithm finds a
feasible solution in O(log(1/δ) + n log(1/ρ0)) iterations.

Proof. It suffices to show that ρ will be at least 1/(32n) in O(log(1/δ) + n log(1/ρ0)) iterations
with probability at least 1 − min{δ, e−n}. Let Xi be a random variable for the i’th iteration, with
value 1 if ρ grows by a factor of (1 + 1/3n) or more and value 0 otherwise. Strictly speaking,
these random variables are not i.i.d.. So, we consider another sequence, Yi, such that Yi = 1 if
|z · x̄| ≥ 1/

√
n and Yi = 0 otherwise. Then the Yi are i.i.d. and by Lemma 3.3(b), Xi ≥ Yi. Let

X =
∑T

i=1 Xi and Y =
∑T

i=1 Yi. Then X ≥ Y ,

E[Y] = T Pr(Y1 = 1) ≥ T

8
,

and the Chernoff bound gives

Pr(Y < (1 − ε)E[Y]) ≤ e−ε2E[Y]/2 = e−ε2T/16

Let ρT be the ρ value after T iterations. Let T = 4096max{n ln(1/ρ0), ln(1/δ)} and ε = 1/16.
Then, using the fact that ρ0 < 1/(32n),

e−ε2T/16 < min{δ, e−n}.

8

Analyzing ρT in the case that Y is within ε of its expectation, we have

ρT ≥ ρ0

(

1 +
1

3n

)X (

1 − 1

32n
− 1

512n2

)T−X

≥ ρ0

(

1 +
1

3n

)Y (

1 − 1

32n
− 1

512n2

)T−Y

≥ ρ0

(

1 +
1

3n

)T

8
−ε T

8

(

1 − 1

32n
− 1

512n2

) 7T

8
+ε T

8

≥ ρ0

(

1 +
1

3n

) 15T

128

(

1 − 1

32n
− 1

512n2

) 113T

128

≥ ρ0e
T/1000n.

In summary, with probability at least 1 − min{δ, e−n}, in at most T iterations, ρ grows to at least
1/(32n), at which point the perceptron phase succeeds in finding a feasible point. �

Finally, the time complexity is a matter of accounting.

Theorem 3.5 For any δ ∈ [0, 1], with probability at least 1 − min{δ, e−n}, the algorithm finds a
feasible solution in time O(mn4 log n log(1/ρ0) + mn3 log n log(1/δ)).

Proof. The inner loops of the perceptron phase and the perceptron improvement phase require
at most one matrix-vector multiplication (time O(mn)), and a constant number of vector manip-
ulations (time O(n)). The number of times we repeat the inner loop is O(n2) in the perceptron
phase (Step 2(b)), and at most log n/σ2 = O(n2 log n) in the perceptron improvement phase (Step
4(b)). The scaling phase takes time O(mn). Computing Bx takes time O(n2). This gives a total
of O(mn3 log n) per iteration.

In the bound on the number of iterations in the previous theorem, every pass through Step 4(b)
is counted as one iteration. Using the bound of O(n log(1/ρ) + log(1/δ)) on the number iterations,
we get the overall time bound as claimed. �

4 The Standard Form and Polynomiality

In this section, we discuss how to reduce the standard linear programming problem to the one
solved in this paper and conclude with a discussion of the complexity bound. A typical approach
to reduce optimization to feasiblity is to replace max cT x by the constraint cT x ≥ c0 for some
value of c0. Binary search can be used to determine a nearly optimal value of c0. A solution that
is feasible for the problem with c0 sufficiently close to optimal can be rounded to an optimal vertex
solution by moving to a basic feasible solution [15].

Next, we show how to reduce the standard form linear feasibility problem

Ax ≤ b, x ≥ 0

into the linear feasibility problem we studied earlier. This technique is typically referred to as
homogenization.

9

Introduce the variable x0 and consider the problem

Ax ≤ bx0, x ≥ 0, x0 > 0

To convert a solution for the standard form to one for the homogenized form, set x0 = 1. To
convert a solution from the homogenized form to a solution for the standard form, divide x by x0.
To rewrite the homogenized form as just

A′x′ ≥ 0, x′ 6= 0,

let x′ = [x x0] and

A′ =





−A b
I 0
0 1





A valid solution to A′x′ ≥ 0 might have x0 = 0. However, because the classic perceptron algorithm
(our perceptron phase) always produces solutions in the strict interior of the feasible region, our
algorithm will always return a solution with x0 > 0.

We now discuss the complexity of the algorithm. The traditional measure of the difficulty of
a linear programming problem in the Turing model of computation is the “bit-length” denoted by
L. The quantity L is essentially the input length of the linear program. Since the total number
of operations in the algorithm is polynomial, it suffices to maintain a polynomial number of bits
of accuracy for all our computations (the intermediate results can be irrational since we compute
square roots). This is similar to many other linear programming algorithms. Another issue is
that our stated complexity depends on log(1/ρ0) where ρ0 is not explicitly part of the input. In
particular, ρ0 for a given input might be zero, e.g., if the feasible region is not full-dimensional. This
issue is also common to linear programming algorithms and can be resolved as follows. Suppose
P = {Ax ≤ b} is the given linear program. Then we consider

P ′ = {Ax ≤ b + ε̄}

where ε̄ is an all-ε column vector and ε is chosen small enough so that P is feasible iff P ′ is feasible.
It is well-known (see e.g. [21]) that log(1/ε) can be bounded by a polynomial in the input length.
The set P ′ is full-dimensional and moreover log(1/ρ0(P

′)) is bounded by a polynomial in the input
length. Alternatively, one can use condition numbers and methods to bound them [11, 7]. It was
shown in [9] that ρ of the homogenized program is no more than n times the Renegar condition
number [19] of the original program, which in turn can be bounded by applying a small perturbation.

Finally, we note that our algorithm is randomized and it can fail with probability at most any
desired δ with the complexity growing as log(1/δ). For a feasible LP, the algorithm will find a
feasible solution in the prescribed time bound with probability 1− δ (in fact, the failure probability
is at most min{δ, e−n}). Thus, if the algorithm fails to find a feasible solution, one can conclude
that the input LP is infeasible and this is guaranteed to be correct with probability at least 1 − δ.
In other words, for an infeasible LP the algorithm always concludes that it is infeasible, while for a
feasible LP it finds a solution with probability 1− δ and (incorrectly) concludes that it is infeasible
with probability at most δ.

10

5 Acknowledgements

We thank Dan Stefankovic, Adam Smith for useful discussions, and Adam Klivans and Rocco
Servedio for bringing [12] to our attention. We are grateful to Rob Freund and Mario Szegedy for
numerous useful comments. We thank the anonymous referees for many improvements.

References

[1] S. Agmon, The relaxation method for linear inequalities, Canadian J. of Math., 6(3), 382–392,
1954.

[2] D. Bertsimas and S. Vempala, Solving convex programs by random walks, Journal of the ACM
51(4), 540–556, 2004.

[3] A. Blum and J. Dunagan, Smoothed Analysis of the Perceptron Algorithm for Linear Program-
ming, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 905–914,
2002.

[4] A. Blum, A. Frieze, R. Kannan, and S. Vempala, A polynomial-time algorithm for learning
noisy linear threshold functions, Algorithmica, 22(1), 35–52, 1998.

[5] T. Bylander, Learning linear threshold functions in the presence of classification noise, Proceed-
ings of the Workshop on Computational Learning Theory, 1994.

[6] E. Cohen, Learning noisy perceptrons by a perceptron in polynomial time, Proceedings of the
Annual IEEE Symposium on the Foundations of Computer Science, 514–523, 1997.

[7] F. Cucker and D. Cheung, A new condition number for linear programming, Mathematical
Programming, Series A, 91(1), 163–174, 2001.

[8] V. Chvatal, Linear Programming, W.H. Freeman, 1983.

[9] J. Dunagan, S. Teng, and D. A. Spielman, Smoothed Analysis of Renegar’s Condition Number
for Linear Programming, SIAM Conference on Optimization, 2002.

[10] R. M. Freund and S. Mizuno: “Interior Point Methods: Current Status and Future Directions,”
in High Performance Optimization, H. Frenk et al. (eds.), Kluwer Academic Publishers, pp. 441-
466, 2000.

[11] R. M. Freund and J. R. Vera, Some characterizations and properties of the ”distance to ill-
posedness” and the condition measure of a conic linear system, Math. Programming, 86, 225–260,
1999.

[12] J. Forster, A Linear Lower Bound on the Unbounded Error Probabilistic Communica-
tion Complexity, Sixteenth Annual IEEE Conference on Computational Complexity 2001,
http://citeseer.nj.nec.com/forster01linear.html

[13] J.-L. Goffin, On the Finite Convergence of the Relaxation Method for Solving Systems of
Inequalities, Ph.D Thesis, 1971. Also research report of the Operations Research Center, Uni-
versity of California at Berkeley.

11

[14] J.-L. Goffin, The relaxation method for solving systems of linear inequalities, Math. of Oper.
Res. 5(3), 388–414, 1980.

[15] L. Grötchel, L. Lovasz, and A. Schrijver, Geometric algorithms and Combinatorial Optimiza-
tion, Springer-Verlag, Berlin, 1988.

[16] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4,
373–396, 1984.

[17] L. G. Khachiyan, A polynomial algorithm in linear programming, (in Russian), Doklady
Akedamii Nauk SSSR, 244, 1093–1096, 1979 (English translation: Soviet Mathematics Dok-
lady, 20, 191–194, 1979).

[18] M. L. Minsky and S. A. Papert, Perceptrons: An introduction to computational geometry,
1969.

[19] J. Renegar, Incorporating condition measures into the complexity theory of linear program-
ming, SIAM Journal on Optimization, 5(3), 506–524, 1995.

[20] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, 1962.

[21] A. Schrijver, Theory of Linar and Integer Programming, Wiley, 1998.

[22] R. Servedio. On PAC Learning using Perceptron, Winnow and a Perceptron-Like Algorithm.
SIAM Journal on Computing, 31(5), 1358-1369, 2002.

[23] R. Servedio, Smooth Boosting and Learning with Malicious Noise. Fourteenth Annual Confer-
ence on Computational Learning Theory, 473-489, 2001.

[24] N. Z. Shor, Cut-off method with space extension in convex programming problems, Cybernetics,
13, 94–96, 1977.

[25] N. Z. Shor, Utilization of the operation of space dilation in the minimization of convex func-
tions, Kibernetika, 1, 6–12, 1970. English translation: Cybernetics, 1, 7–15.

[26] P. M. Vaidya, A new algorithm for minimizing convex functions over convex sets, Mathematical
Programming, 291–341, 1996.

[27] D. B. Yudin and A. S. Nemirovski, Evaluation of the information complexity of mathematical
programming problems, (in Russian), Ekonomika i Matematicheskie Metody 12, 128-142, 1976
(English translation: Matekon 13, 2, 3-45, 1976).

6 Appendix

Here we will show that for a fixed unit vector z ∈ R
n, the probability that a random unit vector

x ∈ R
n satisfies z · x ≥ 1/

√
n is at least 1/8. Throughout, we assume n ≥ 4.

We begin with a proof of a constant lower bound on the probability. Let Sn−1 be the unit
sphere in R

n and C(t) denote the cap at distance t from the origin along the x1 axis, i.e.,

C(t) = {y ∈ Sn−1 : y1 ≥ t}

12

The probability of the desired event is vol(C(1/
√

n))/vol(Sn−1).
Expressing these volumes as integrals in terms of an angle θ, we get

∫ π/2

arcsin(1/
√

n)
(cos θ)n−2 dθ

2
∫ 1
0 (cos θ)n−2 dθ

.

Using the substitution t = sin θ, this is equal to

∫ 1
1/

√
n(1 − t2)(n−3)/2 dt

2
∫ 1
0 (1 − t2)(n−3)/2 dt

.

The integrand A(t) = (1−t2)(n−3)/2 has a maximum value of 1, so its integral in the range [0, 1/
√

n]
is at most 1/

√
n. On the other hand, in the range [1/

√
n, 2/

√
n], assuming n ≥ 5, the integrand is

at least
(

1 − 4

n

)(n−3)/2

≥ 1

e2

and so the integral in the range [1/
√

n, 1] is at least 1/(e2√n). Hence the desired event has
probability at least

∫ 1
1/

√
n A(t) dt

2
∫ 1/

√
n

0 A(t) dt + 2
∫ 1
1/

√
n A(t) dt

≥
1

e2
√

n

2
(

1√
n

+ 1
e2

√
n

) =
1

2(1 + e2)
,

an absolute constant.
To calculate the bound more precisely, it is useful to view a random unit vector being generated

as follows: we pick each coordinate independently from a standard Gaussian and then scale the
resulting vector to make it unit length. Let the random variables representing the coordinates be
X1, . . . , Xn. Then we are interested in the following:

Pr





X1
√

∑n
i=1 X2

i

≥ 1√
n



 =
1

2
Pr

(

X2
1 ≥

∑n
i=2 X2

i

n − 1

)

.

Each X2
i has a χ-squared distribution. At this point we could use a concentration bound on the

sum of n − 1 such variables. Alternatively, one can first observe that the desired probability is a
monotonic decreasing function of n and then calculate its limit as n increases. In the limit, the
desired probability is

1

2
Pr(X2

1 ≥ 1) = Pr(X1 ≥ 1)

where X1 is drawn from the standard Normal distribution. This quantity is well-studied and is a
constant slightly larger than 1/8.

13

