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Abstract

We study the problem of finding an outlier-free subset of a set of points (or a
probability distribution) in n-dimensional Euclidean space. As in [1], a point x is
defined to be a β-outlier if there exists some direction w in which its squared distance
from the mean along w is greater than β times the average squared distance from the
mean along w. Our main theorem is that for any ε > 0, there exists a (1− ε) fraction of
the original distribution that has no O(nε (b+log n

ε ))-outliers, improving on the previous
bound of O(n7b/ε). This bound is shown to be nearly the best possible. The theorem is
constructive, and results in a 1

1−ε approximation to the following optimization problem:
given a distribution µ (i.e. the ability to sample from it), and a parameter ε > 0, find
the minimum β for which there exists a subset of probability at least (1 − ε) with no
β-outliers.

1 Introduction

The term “outlier” is a familiar one in many contexts. Statisticians have several notions of
outliers. Typically they quantify how far the outlier is from the rest of the data, e.g. the
difference between the outlier and the mean or the difference between the outlier and the
closest point in the rest of the data. In addition, this difference might be normalized by
some measure of the “scatter” of the set, e.g. the range or the standard deviation. Data
points that are outside some threshold are labelled outliers.

Identifying outliers is a fundamental and ubiquitous problem. The outliers in a data set
might represent experimental error, in which case it would be desirable to remove them.
They could affect the performance of a computer program, by slowing down or even mislead-
ing an algorithm; machine learning is an area where outliers in the training data could cause
an algorithm to find a wayward hypothesis. Even from a purely theoretical standpoint, re-
moving outliers could lead to simpler mathematical models, or the outliers themselves might
constitute the phenomenon of interest.

How does one find outliers? To address this question we have to first answer another: what
precisely is an outlier? In this paper we will assume that the data consists of points (or a
distribution) in n-dimensional Euclidean space. In the one-dimensional case, one could use
one of the definitions alluded to above, viz. a point is an outlier if its distance from the
mean is greater than some factor times the standard deviation. In figure 1, the top data
set depicts this definition: the data points are the solid circles, and the mean, along with
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the mean plus or minus one standard deviation, are the hash marks. The leftmost point is
1.86 standard deviations away from the mean.

The following generalization to higher dimensions was used in [1]. Let P be a set of points
in Rn. A point x in P is called a β-outlier if there exists a vector w such that the squared
length of x along w is more than β times the average squared length of P along w, i.e. if

(wTx)2 > βEx∈P [(wTx)2]

Note that (wTx)2 is the squared distance along w from the origin. In figure 1, the bottom
two pictures show how different points may be the furthest outliers for different choices of
w. In each graph, the solid circles are the data points, the line is the direction w, and the
hash marks along the line are the projections of the data points onto the line. The first
problem we address is the following: does there exist a small subset of P whose removal
ensures that the remaining set has no outliers? More precisely, what is the smallest β such
that on removing a subset consisting of at most an ε fraction of the points, the remaining
set has no β-outliers (with respect to the remaining set)?

Figure 1: Defining Outliers

A natural approach is to find all β-outliers in the set and remove them. This can be done
by first applying a linear transformation (described in section 2) that results in the average
squared length of the distribution being 1 along every unit vector (the so-called isotropic
position). Isotropic position was used in [4] to show that any convex set K in isotropic
position contains a unit ball and is contained in a ball of radius n. Bringing a distribution
into isotropic position allows us to identify outliers easily. Now a point that is a β-outlier
simply has squared length more than β. The main difficulty is that the remaining set might
still have outliers — it is possible that points that were previously not outliers now become
outliers. Can this happen repeatedly and force us to throw out most of the set?

Our main result is that the answer to this question is “no” for a surprisingly small value of β.
We present it below in a more general framework. LetRnb = {0}∪{x ∈ Rn : 2−b ≤ |x| ≤ 2b},
i.e. the subset of n-dimensional space outside of a very small ball and inside a very large
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ball, plus the origin. In place of the point set P in the discussion above we have any
probability distribution µ on Rnb . Note that Rb contains the set of all b-bit rationals, an
object of frequent interest in theoretical computer science. For a probability distribution µ,
let µ(S) denote the probability of a subset of space S.

Theorem 1 (Main Theorem) Let µ be a probability distribution on Rnb . Then for every
ε > 0, there exists S and

β = O

(
n

ε
(b+ log

n

ε
)
)

such that
(i) µ(S) ≥ 1− ε
(ii) max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S] for all w ∈ Rn

The proof of the theorem (section 3) is constructive. In section 2 we describe (two variants
of) an algorithm for outlier removal. The theorem can be proven using either variant.
Although the theorem is not obvious, the algorithm is extremely simple. To convince the
reader of this, we include a matlab implementation of the algorithm in section 8.

For a point set with m points (m > n) the algorithm runs in O(m2n) time. In section 4
we show that the algorithm can also be used on an unknown distribution if it is allowed
to draw random samples from the distribution. The number of samples required is Õ(n

2b
ε )

and the running time is Õ( b
2n5

ε2
).

Our algorithm is similar to the algorithm of [1], the immediate inspiration for our work.
The bound on β in the theorem improves on the previous best bound of O(n

7b
ε ) given in [1].

There it was used as a crucial component in the first polytime algorithm for learning linear
threshold functions in the presence of random noise. Due to the high value of β, the bound on
the running time of the learning algorithm, although polynomial, is a somewhat prohibitive
Õ(n28). In contrast, our theorem implies an improved bound of Õ(n5) for learning linear
thresholds from arbitrary distributions in the presence of random noise. Further, our bound
on β is asymptotically the best possible. This is shown in section 5 by an example where
for any ε < 1

2 , a bound on β better than Ω(nε (b− log 1
ε )) is not possible.

Our main theorem gives an extremal bound on β. A natural follow-up question is whether
one can achieve the best possible β for any particular distribution. Given a distribution µ
and a parameter ε, we want to find a subset of probability at most ε whose removal leaves
an outlier-free set with the smallest possible β. This question can be shown to be NP-hard
even in the one-dimensional case by a reduction to subset-sum. In section 6 we prove that
our algorithm achieves a ( 1

1−ε)-approximation to the best possible β for any given ε.

In some cases it may be desirable to translate the data set so that the origin coincides with
the mean, rather than having a fixed origin. We prove the following corollary for standard
deviations from the mean in section 7. Let µ be a probability distribution on Inb , where
Ib = {pq : |p|, |q| ∈ {0, 1, 2, ..., 2b− 1}, q 6= 0}, i.e. Inb is the set of all n-dimensional vectors of
b-bit rationals. Then for any ε > 0, there exists a (1 − ε) fraction of the distribution such
that along every direction, no point is further away from the mean than O(

√
n
ε (b+ log n

ε ))

standard deviations in that direction. We also give a
(

1−ε
1−2ε

)2
-approximation algorithm for

the corresponding optimization problem.
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2 Algorithms for Outlier Removal

We state our algorithms for probability distributions over a restriction of Rnb for ease of
exposition. We remove this restriction in a single step at the end of section 3. Let Jb =
{0} ∪ [2−b, 2b] and Jnb = {x ∈ Rn| xi ∈ Jb, i = 1, 2, . . . , n}, i.e. the subset of n-
dimensional space with coordinates in Jb. Note that the coordinate axes play a special role
in Jnb . We assume for the remainder of this section that the probability distribution we are
interested in is over Jnb .

In order to detect outliers, we use a linear transformation. Let M = E[xxT ] where x
is drawn according to the probability distribution µ. Since M is positive definite, there
exists a matrix A such that M = A2. Consider the transformed space z = A−1x. This
transformation preserves outliers: if z is a β-outlier in direction w in the transformed space,
the corresponding x = Az is a β-outlier in direction w′ = A−1w in the untransformed space,
and vice versa. The transformed distribution is in isotropic [4] position, and we will refer to
the transformation as centering. Such transformations have previously been used to make
geometric random walks more efficient [3]. If M does not have full rank, it is still positive
semi-definite, and we instead center µ in the span of M .

For an isotropic distribution, any point x that is an outlier for some direction w is also
an outlier in the direction x. This follows from the fact that an isotropic distribution has
E[(wTx)2] = 1 for every w such that |w| = 1, and that the projection of the point x on to
a direction w is greatest when w = x/|x|. Thus outlier identification is easy for isotropic
distributions.

The first algorithm has the following simple form: while there are β-outliers, throw them
out; if at any point we are very close to a lower dimensional subspace, drop to the lower
dimensional subspace. Stop when there are no outliers. In the description below, µ is the
given distribution, c is an absolute constant and β = γ2 = c(nε (b+ log n

ε )).

Algorithm 1 (Restriction to Ellipsoids):

1. Center µ. If there exists x such that |x| > γ, let S = {x : |x| ≤ γ}. Retain only points
in S.

2. Transform back to the original space. If there is some coordinate axis i such that
Pr[xi ≥ 2−b] ≤ ε

3n , throw out all points x with xi ≥ 2−b.

3. Repeat until neither of the above conditions is met.

The following variant of the above algorithm will be significantly easier to analyze. Whereas
in the previous algorithm, we removed outliers in every direction in one step, in Algorithm
2, we only remove outliers in one direction per step.

Algorithm 2 (Restriction to Slabs):

1. Center µ. If there exists a unit vector w such that max{(wTx)2} > γ2, let S = {x :
(wTx)2 ≤ γ2}. Retain only points in S.

2. Transform back to the original space. If there is some coordinate axis i such that
Pr[xi ≥ 2−b] ≤ ε

3n , throw out all points x with xi ≥ 2−b.

3. Repeat until neither of the above conditions is met.
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3 Proof of the Main Theorem

When either algorithm terminates, we clearly have a β-outlier free subset. It remains to
show that we do not discard too much of the distribution. The main idea of the proof is to
show that in every step the volume of an associated dual ellipsoid increases. By bounding
the total growth of the dual ellipsoid volume over the course of the algorithm, we will deduce
that no more than a certain fraction of the original probability mass is thrown out before
the algorithm terminates. Special care will be taken to deal with the possibility that at
some step the distribution µ becomes concentrated on a subspace of lower dimension.

Towards this end, we will need some definitions. For a matrix M such that M = A2 define
the ellipsoids E(M) and W (M) as

E(M) = {x : |A−1x| ≤ 1} and W (M) = {x : |Ax| ≤ 1}.

We will refer to E(M) and W (M) as the primal inertial ellipsoid and the dual ellipsoid
respectively. For any subset S of Rn, we denote by MS the matrix given by

MS = E[xxT : x ∈ S] Pr[x ∈ S] =
∑
x∈S

µ(x)xxT

In other words, MS is the matrix obtained by restricting µ to S (zeroing out points outside
of S). We denote this restricted probability distribution directly by µ|S . The useful property
attained by centering with respect to µ|S (the restriction of the original distribution to S)
is that

E[(wTx)2 : x ∈ S] Pr[x ∈ S] = 1

for every unit vector w, where the expectation and probability are with respect to x drawn
from µ. We will actually prove theorem 1 with E[(wTx)2 : x ∈ S] Pr[x ∈ S] in place of
E[(wTx)2]. Note that this is a stronger statement than the original theorem.

We will also need the following elementary facts about ellipsoids: the volume of a full-
dimensional ellipsoid is given by the product of the axis lengths times the volume of the
unit ball, which we will denote by f(n). The ellipsoid {x : |A−1x| ≤ 1} has axes given by
the eigenvectors of A; It follows that V ol(W (M))V ol(E(M)) = (f(n))2, a function solely
of the dimension.

Lemma 1 relates the dual volume growth to the loss of probability mass, and lemma 2 upper
bounds the total dual volume growth.

Lemma 1 (Restriction to a Slab) Let γ be fixed, and let µ be a full-dimensional isotropic
distribution. Suppose ∃w, |w| = 1 such that

max{(wTx)2} > γ2E[(wTx)2]

Let S = {x : (wTx)2 ≤ γ2} and p = Pr[x /∈ S]. Then

V ol(W (MS)) ≥ epγ2/2V ol(W (M))

Proof: Let a2 = E[(wTx)2 : x ∈ S] Pr[x ∈ S]. Starting from the identity

E[(wTx)2] = Ex∈S [(wTx)2] Pr[x ∈ S] + Ex/∈S [(wTx)2] Pr[x /∈ S]
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and using that (wTx)2 ≥ γ2 for all x not in S, we get that 1 ≥ a2 + γ2p, which implies

a2 ≤ 1− γ2p ≤ e−γ2p

We now construct a vector w′ of length 1/a belonging to the dual ellipsoid. Letting w′ = w/a
suffices since w is a unit vector by assumption and

a2 = E[(wTx)2 : x ∈ S] Pr[x ∈ S] = wTMSw

⇒ 1 = w′
T
MSw

′ ⇒ w′ ∈W (MS)

We also show that every v ∈W (M) also belongs to W (MS). We have

MS = M −
∑
x/∈S

µ(x)xxT .

Hence,
vTMSv = vTMv −

∑
x/∈S

µ(x)vTxxT v

= vTMv −
∑
x/∈S

µ(x)(vTx)2 ≤ vTMv ≤ 1

implying that v ∈ W (MS) (the last step is from the assumption that v ∈ W (M)). The
length of a point on the boundary of an ellipsoid lower bounds the length of the longest axis.
Since at least one axis of the dual has length 1/a, and all the other axes have length at least
1, V ol(W (MS)) ≥ (1/a)f(n) while V ol(W (M)) = f(n), implying the dual volume grows by
at least a factor of eγ

2p/2. If the dual ellipsoid has infinite volume after this iteration, then
the statement is still true because the dual ellipsoid had finite volume at the beginning of
the iteration. This concludes the proof of lemma 1.

Lemma 2 (Dual Volume Growth) Let µ be an initial full-dimensional distribution, and
let µ|S∗ be the final distribution resulting from application of either algorithm. Assume µ|S∗
is full-dimensional. Let L = (b+ log n

ε ). Then

V ol(W (M)) ≥ 2−nL

V ol(W (MS∗)) ≤ 2nL

Proof: First we lower bound the initial dual volume, V ol(W (M)). Consider any vector v
of length at most 2−b/

√
n. Since the longest possible x belonging to µ is of length at most

2b
√
n, we have that vTMv = E[(vTx)2] ≤ 1 and so v belongs to the dual ellipsoid. Thus

the dual ellipsoid initially has volume at least (2−b/n)n = 2n(−b−logn) ≥ 2−nL (using the
inscribed cube to lower bound the volume of the ball).

Next we upper bound V ol(W (MS∗)). Consider any vector v of length |v|. Then v has length
at least |v|/

√
n on some coordinate axis i. By the property that µ|S∗ is full-dimensional, the

test condition in step 2 of either algorithm was never satisfied, and thus at least an ε/3n
fraction of the points x have value at least 2−b on this coordinate axis. This yields that

vTMv = E[(vTx)2] ≥ (|v|2/n)(2−2b) Pr[xi ≥ 2−b] ≥ (|v|2/n)(2−2b)(ε/3n)
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For v to be in the dual ellipsoid, we must have vTMv ≤ 1↔ |v| ≤ 2b+logn+1/2 log 3/ε. Thus
the ultimate volume of the dual ellipsoid is no more than 2n(b+logn+1/2 log 3/ε) ≤ 2nL (using
the containing cube to upper bound the volume of the ball).

Using lemmas 1 and 2, we prove that Algorithm 2 terminates with S satisfying theorem 1.

Proof: Suppose that the algorithm terminates with subset S∗ after having thrown out no
more than ε′ of the original probability mass. Then we have that for every w,

max{(wTx)2 : x ∈ S∗} ≤ γ2E[(wTx)2 : x ∈ S∗] Pr[x ∈ S∗]

We remind the reader again that normalizing µ|S∗ so that it is a probability distribution
on points from µ, rather than with points outside of S∗ replaced by zeros, increases the
right-hand side of this inequality by the factor 1/µ(S∗), but does not increase the left-hand
side. Thus the inequality will still be true even if we normalize µ|S∗ . We thus achieve

β = γ2 = c
n

ε
(b+ log

n

ε
)

It now remains to show that ε′ ≤ ε, i.e. that we do not throw out more of the probability
mass than claimed. First suppose µ|S∗ is full dimensional. Let L = (b+ log n

ε ).

Suppose that during the ith iteration of the algorithm through step 1, a pi fraction of the
original points are thrown out. Then the total amount thrown out is

∑
pi. By lemma 1,

the total amount of dual volume increase is
∏
i e
piγ

2/2 = e
γ2

2

∑
pi . Comparing this to our

bound on the total increase in the dual volume from lemma 2 yields

e
γ2

2

∑
pi ≤ 22nL

For our choice of γ2 with c = 36, we have that
∑
pi ≤ ε/3.

We now extend the proof to the case that the final distribution is not full-dimensional. This
drop in dimension is the main issue of the proof once we have lemmas 1 and 2. Suppose
that at some step of the algorithm, we move from M of dimension k to M ′ of dimension
k′. We then want to restrict ourselves for the rest of the algorithm to the k′-dimensional
subspace spanned by M ′. That is, both W (M ′) and E(M ′) are k′-dimensional objects. We
denote the fact that we are now considering the volume of a lower-dimensional object by
adding a subscript to our V ol(·) function. We show two things

(a) Our upper bound on the total volume of the dual ellipsoid decreases by 2(k−k′)L

(b) V olk(W (M))
V olk′ (W (M ′)) ≤ 2(k−k′)L

Thus the amount by which we are away from our upper bound on the total growth of the
dual volume cannot have increased. (a) is immediate from the way we calculated the upper
bound on the final dual volume. (b) will be proved shortly. We now conclude the argument
assuming (b). Every time µ drops in dimension (i.e., the rank of M decreases), we may not
have made any progress in increasing the dual volume, and thus we cannot apply lemma
1 to the probability mass thrown out in this step. However, taking γ2 ≥ 3n/ε yields that
we won’t throw out more than an ε/(3n) fraction of the total probability mass on any one
step. This follows from
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Pr[x /∈ S] = Pr[(wTx)2 ≥ γ2] ≤ E[(wTx)2]
γ2

=
1
γ2

Since our choice for γ2 already satisfied the above criterion, we conclude that every time we
drop in dimension, we throw out no more than an ε/(3n) fraction of the probability mass.
Since we might also drop in dimension by explicitly throwing out up to an ε/(3n) fraction
of the probability mass (the criterion for step 2 of Algorithm 2), we can upper bound the
total amount of probability mass thrown out without any increase in the dual by
2ε
3n × (total number of dimensions dropped) ≤ 2ε

3 . Combining this with
∑
pi ≤ ε/3, we see

that we throw out no more than ε probability mass over the life of the algorithm. Thus
ε′ ≤ ε, and our final bound on β is

β ≤ 36n
ε

(b+ log
n

ε
)

To prove property (b) we use the following simple lemma about ellipsoids.

Lemma 3 (Ellipsoid Slices) Consider an n-dimensional ellipsoid E with axis lengths
a1 ≥ . . . an. Now take any k-dimensional slice C through the center of E. Then

V olk(C) ≥ f(k)
n∏

i=n−k+1

ai.

(b) is a corollary of lemma 3 because no axis of the dual ellipsoid has length more than 2L,
and the other axes of W (M) can only grow when we throw out probability mass from µ. It
only helps that f(n) is monotonically decreasing in n.

Proof of lemma 3. The main tool is the Courant-Fischer Theorem [5].

Theorem 2 (Courant-Fisher) Let A be a real symmetric n× n matrix, λi the ith eigen-
value, λ1 ≥ . . . λn. Then

λi = min
U

max
x∈U,x 6=0

xTAx

xTx

where the minimum is over all (n− i+ 1)-dimensional subspaces U .

Since the k dimensional slice is a subspace U with i = n − k + 1, and the axis lengths
of W (M) are given by the eigenvalues of A, we find that the longest axis of the sliced
ellipsoid has length at least an−k+1. Applying the same argument to the k− 1 dimensional
subspace of C perpendicular to the longest axis of the sliced ellipsoid, we find that the next
longest axis has length at least an−k+2. Applying the argument to the remainder of the
axes concludes the proof of lemma 3. This also concludes the proof of the main theorem.

We now give an alternate proof of the main theorem using the construction given by Algo-
rithm 1. We begin by proving an analogue to lemma 1.

Lemma 4 (Restriction to an Ellipsoid) Let γ be fixed, and let µ be a full-dimensional
isotropic distribution. Let S = {x : (xTx) ≤ γ2} and p = Pr[x /∈ S]. Then

V ol(W (MS)) ≥ epγ2/2V ol(W (M))
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Proof: First we establish the tradeoff for a radially symmetric distribution, and then we
show that a radially symmetric distribution is the worst case for the tradeoff we want.

Let µ′ be a radially symmetric distribution, and define M ′, S, and p as above. We then
calculate the increase in V ol(W (M ′)). Let a2 = Eµ′ [(wTx)2 : x ∈ S] Pr[x ∈ S] for any
w, |w| = 1. From the center of an n-dimensional sphere of radius γ, the projection of
the sphere on to any direction is sharply concentrated around γ/

√
n, and the squared

expectation is exactly γ2/n. Using the identity

E[(wTx)2] = Ex/∈S [(wTx)2] Pr[x /∈ S] + Ex∈S [(wTx)2] Pr[x ∈ S]

as in the proof of lemma 1, but now for any w, we deduce 1 ≥ a2 + γ2p/n, and thus

an ≤
(

1− γ2p

n

)n/2
≤ e−γ2p/2

As in the proof of lemma 1, we observe that W (M ′S) includes a vector of length 1/a in the
direction of w. Since this is now true for every w, the dual ellipsoid volume increases by at
least a factor of (1/a)n. This shows that in the case of a radially symmetric distribution,

V ol(W (MS)) ≥ epγ2/2V ol(W (M))

Now we show that a radially symmetric distribution is the worst case for the tradeoff we
want. Suppose there were some isotropic, full-dimensional distribution µ for which the
statement of the lemma was not true. We construct a new isotropic, full-dimensional and
radially symmetric distribution µ′ for which the statement is also false.

We begin by noting that every point thrown out from µ is also thrown out from any rotation
of µ – this just follows from the fact that µ is isotropic. Let µ′ be the expectation of µ
under a random rotation. That is, µ′ is a radially symmetric distribution such that the
probability of choosing x from µ′ at distance less than r from the origin is exactly the same
as the probability of choosing x from µ at distance less than r from the origin, for every r.
Let M ′ correspond to µ′.

Consider an axis direction wi of E(MS), |wi| = 1. We have a2
i = E[(wTi x)2 : x ∈ S] Pr[x ∈

S]. For E(M ′S), denote the axis length for any axis (also just the radius of E(M ′S)) by ā.
We find from the construction of µ′ that

ā2 =
1
n

n∑
i=1

E[(wTi x)2 : x ∈ S] Pr[x ∈ S] =
1
n

n∑
i=1

a2
i

One way to visualize this equality is to take µ and simply consider µ̃ achieved by rotating
the axes of µ onto the other axes of µ; since this is a discrete set of rotations, it is clear that
the squared axis lengths of µ̃ are just the arithmetic averages of the squared axis lengths of
µ. Then we can make µ̃ into µ′ by taking a continuous set of rotations, without affecting
the axis lengths from µ̃.

We now consider the volume of E(M ′S). We have

V ol(E(M ′S)) = f(n)
n∏
i=1

ā = f(n)

√√√√ 1
n

n∑
i=1

a2
i

n ≥ f(n)
n∏
i=1

ai = V ol(E(MS)
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using the arithmetic mean-geometric mean inequality. This implies that V ol(W (MS)) ≥
V ol(W (M ′S)). This concludes the proof of lemma 4.

Finally, we prove that Algorithm 1 terminates with S satisfying theorem 1.

Proof: Lemma 2 still holds. The rate of increase in the dual volume as we throw out
probability mass when the dimension remains constant is clearly still good as well. However,
our bound on the amount of probability mass p that can be thrown out in a single step is
no longer ε/(3n). Instead, we have from the proof of lemma 4 only that
0 ≤ 1− pγ2/n which only leads to p = O(ε) for our chosen value of γ2. Thus, the analysis
for Algorithm 2 does not immediately apply.

To analyze Algorithm 2, we argued that any drop in the dual on the up to n possible
steps in which the dimension dropped could not lead to more than an ε overall drop in the
probability mass. Thus we were able to just argue that the maximum amount by which
the dual volume still might grow couldn’t increase in this step. To successfully analyze
Algorithm 1, we must prove the stronger statement that if we throw out a lot of probability
mass, and the dimension drops by only a small amount, then we still make significant
progress on the overall growth of the dual volume. To be precise, letting M,M ′, p, k, k′, L
be as before (in the analysis of Algorithm 2), we prove

(c) V olk′ (W (M ′))
V olk(W (M)) ≥ 2−(k−k′)(L+1)epγ

2/4

(Compare to (b) in the analysis of Algorithm 1.) The idea for our proof of (c) is that any
point either has a large component in the subspace that vanishes, or a large component
in the subspace that remains — if the dimension drops by only a small amount, there
cannot have been too many points with a large component in the subspace that vanishes,
and the dual volume growth results from the discarded points with a large component in
the subspace that remains. Let Wremain be the k′-dimensional space spanned by M ′, and
Wtossed be the (k− k′)-dimensional subspace of span(M) orthogonal to Wremain. Let p1 be
the probability that the projection of x onto Wremain is at least γ√

2
, and similarly let p2 be

the probability that the projection of x onto Wtossed is at least γ√
2
. One of these two events

happens for every point x. Thus p ≤ p1 + p2.

Taking any unit vector w ∈Wtossed and using our favorite equation

E[(wTx)2] = Ex/∈S [(wTx)2] Pr[x /∈ S] + Ex∈S [(wTx)2] Pr[x ∈ S],

we have that

1 ≥ 0 + (
γ2

2
1

k − k′
)p1 ⇒ p1 ≤

2(k − k′)
γ2

where the factor 1/(k − k′) comes from the expected squared projection of a (k − k′)-
dimensional unit vector on to a random direction.

Taking instead a unit vector w ∈ Wremain and letting ā2 = E[(wTx)2 : x ∈ S] Pr[x ∈ S], a
similar analysis gives

āk
′ ≤

(
1− p2γ

2

2k′

)k′/2
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Since 1/(āk
′
) is a lower bound on the increase in the volume of the dual ellipsoid in the

subspace Wremain, and the dual volume drop in moving to that subspace was at most
2−(k−k′)L, we have an increase in the dual volume of at least 2−(k−k′)Lep2γ2/4. Using p2 ≥
p− p1 ≥ p− 2(k−k′)

γ2 yields that this is 2−(k−k′)Lepγ
2/4e(k−k′)/2, which then implies (c).

The tradeoff expressed in (c) is slightly weaker than (b) from the analysis of Algorithm 2,
but it is independent of whether we drop in dimension on a given iteration or not.

Suppose we throw out probability mass pi the ith time through step 1 of Algorithm 1. From
(c), we have that dropping in dimension only takes away from our progress towards the
upper bound on dual volume growth by at most a factor of two per dimension that we
drop, and thus we find

e
γ2

2

∑
pi ≤ 22n(L+1)

Our choice of γ2 with c = 36, implies
∑
pi ≤ 2ε/3. We throw out less than ε/3 of the

probability mass in step 2 over the life of the algorithm. Thus the entire algorithm throws
out no more than an ε fraction of the probability mass. This concludes the analysis of
Algorithm 1.

We now remove the technicality of restricting to Jnb instead of Rnb .

Lemma 5 (Choice of Axes) Let µ be a probability distribution over Rnb . There exists a
rotation of µ, which we denote by µ′, a subset of space T , and B = O(b+ log n

ε ) such that
(i) µ′(T ) ≥ 1− ε

2
(ii) µ′|T is a probability distribution over JnB

Proof: We construct µ′ by randomly rotating µ. T is chosen to be the largest subset of
space we may retain and still not have any points with too small a coordinate value in any
axis (so T equals JnB, the set that we want µ′|T to be over).

Restricting to T consists of throwing away any points with value less than 2−B along any
axis. The expected amount of probability mass thrown away is then at most n times the
amount thrown away by restricting along one axis (i.e., removing all points within the slab
of width 2−B+1 centered at the origin and perpendicular to the one axis.)

Consider a single point x ∈ Rnb , x 6= 0. The following bound on the probability of a small
projection in the direction of a random unit vector is proved in [2].

Pr
w∈Sn

[(wTx)2 ≤ x2

nC
] ≤ 4

C

Let C = 16n
ε and B = b+ log 16n2

ε . Since |x| ≥ 2−b, we have for the chosen value of C that
2−2B ≤ x2

nC . As we only throw out the point if it’s projection is less than 2−2B, this choice
of B implies that the probability of throwing out a point is at most ε

4n for one axis. Thus
with probability at least a half, we throw out no more than an ε

2 fraction of the distribution
after considering all n axes.

Let us now consider the bound on β we achieve when our initial distribution is not over Jnb ,
but rather over Rnb . We apply the transformation in lemma 5 as an initial step, and then

11



apply the algorithm as before. Our upper bound on β does increase, but only by a constant
factor. This is shown in our concluding calculation, where we use ε

2 , B in place of ε, b.

β = O

(
n

ε/2
(B + log

n

ε
)
)

= O

(
2n
ε

(b+ log
16n2

ε
+ log

n

ε
)

)
= O

(
n

ε
(b+ log

n

ε
)
)
.

4 Efficiency

In this section we describe polynomial time versions of both algorithms. The computational
model is to allow multiplications and additions in unit time.

4.1 Point sets

Suppose the distribution µ is specified explicitly as a set of m points with weights corre-
sponding to probabilities. Then we can achieve exactly the stated value of β with either
algorithm deterministically. The running time for either algorithm is given by the time
to compute M (O(mn2)), the time to center the distribution (O(n3 + mn2)), the time to
find an outlier (O(mn)), and the need to repeat the whole process up to m times. The
amount of time spent in step 2 of either algorithm is negligible. This yields a time bound
of O(m2n2 +mn3).

In the above discussion we made the worst case assumption that only one data point was
thrown out in each iteration of centering and looking for outliers. In the case that a
single data point is throw out, centering the distribution can be done more efficiently.
If the distribution is initially isotropic, and v of probability p is removed, then the new
isotropic distribution is achieved by replacing each vector u by u −

(
1−

√
1− v2p

)
(uT v)v
v2

An intuitive explanation for this formula is that we are just correcting the inertial ellipsoid
in the direction of v. Using this observation, we compute M from scratch once (O(mn2)),
center the distribution from scratch once (O(n3 +mn2)), and then find an outlier (O(mn))
and recenter using our formula above (O(mn)) a total of at most m times. This yields the
improved time bound of O(m2n+mn2 + n3).

4.2 Arbitrary distributions

The more interesting problem is where we are not given µ explicitly, but rather only the
ability to sample from µ. The outlier-free restriction of µ will be specified as the part of µ
contained in an ellipsoid. The algorithm for distributions is:

1. Apply lemma 5 (if necessary) to get a set of “clean” axes.

2. Get a set P = {x1, . . . , xm} of m samples from µ.

3. Run the outlier removal algorithm algorithm on the discrete point set P with param-
eter Γ2.

4. Let P ′ be the outlier free subset of P . Then the outlier-free restriction of µ is given
by (1 + δ)2Γ2E(M̄), where M̄ = 1

m

∑
xi∈P ′ xix

T
i and δ > 0 is an accuracy parameter.

12



The main theorem of this section is the following.

Theorem 3 (Sample Complexity) Let
m = (Γ2

δ2 (n log n
δ + log b+log n

ε
δ )). With high probability, either outlier removal algorithm run

with parameter Γ2 = (1 + δ)2γ2 returns a set T satisfying
(i) µ((1 + δ)2T ) ≥ 1− ε
(ii) (1 + δ)2T has no (1 +O(δ))γ2-outliers
where (γ2, ε) is achieved by the deterministic omniscient algorithm (omniscient in that it
knows the distribution exactly).

For the remainder of this section, assume that the deterministic omniscient algorithm with
parameter γ2 finds a subset S such that µ(S) ≥ 1 − ε, and µ|S has no γ2-outliers. The
statement “µ|S has no γ2-outliers”, or simply “S has no γ2-outliers” (since µ is implicit),
is exactly that ∀w,max{(wTx)2 : x ∈ S} ≤ γ2E[(wTx)2 : x ∈ S] Pr[x ∈ S]. Since S and T
are always convex, whenever we have ∀w,max{(wTx)2 : x ∈ S} ≤ max{(wTx)2 : x ∈ T},
we will be able to conclude that S ⊆ T (or at least µ(T \S) = 0 which is just as good). We
know that γ2 = Õ( bnε ) is always achievable, but in some cases we may do better, and our
bound on running time is proved for arbitrary values of γ2.

Suppose that at some step we can estimate E(M) to within 1 ± δ in every direction. Let
Γ2 = (1 + δ)2γ2. Then every point that we perceive to be a Γ2-outlier will be at least a γ2-
outlier with respect to the true distribution, and so removing them does not throw away any
point that the deterministic algorithm keeps. Similarly, if we perceive the distribution to
have no Γ2-outliers, the true distribution will have no (1 + δ)2Γ2-outliers. Before removing
outliers, we may not have that M̄ (our working estimate of M) is within 1 ± δ of M .
However, whenever we are wrong by more than 1+δ, there is some true outlier with respect
to the original distribution that we throw out even using our flawed estimate M̄ . This line
of reasoning (made rigorous) will allow us to find a (1+O(δ))γ2-outlier-free subset in space,
where γ2 is the parameter achieved by the deterministic version of the algorithm. In lemma
6 we show this for a particular direction in a particular iteration. In lemma 7 we extend
this to all iterations, and finally in the proof of theorem 3 we extend this to all directions
and all iterations. We also show m = O(Γ2

δ2 (n log n
δ + log b+log n

ε
δ )) samples suffice to achieve

our stated goal of a (1 +O(δ))γ2-outlier free set with high probability.

Lemma 6 (Outlier Detection, One Iteration) Fix a direction w. Let S be a subset of
space. Let our number of samples be m = O(γ2/δ2), and consider the sample distances in
direction w given by {wTxi}. Let y = E[(wTx)2 : x ∈ S] Pr[x ∈ S] and x̄ be the sample
variance,

x̄ =
1
m

∑
xi∈S

(wTxi)2.

Then with constant probability
(i) max{(wTx)2 : x ∈ S} ≤ γ2y ⇒ (1− δ)y ≤ x̄ ≤ (1 + δ)y.
(ii) max{(wTx)2 : x ∈ S} ≤ γ2y and T = {x : (wTx)2 ≤ Γ2x̄} ⇒ S ⊂ T .

Proof: Property (i) says that we do correctly estimate the variance of an outlier-free
restriction of the distribution, and property (ii) assures us that any outlier-free restriction
of the distribution has no probability mass past Γ2 times the sample variance (i.e., we can
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always safely throw away probability mass using the sample variance). Both claims are for
a fixed direction w . Note that S found by the deterministic omniscient algorithm satisfies
the conditions of both (i) and (ii).

Let Xi be the random variable representing the squared distance of xi along the direction
w, Xi = (wTxi)2. Without loss of generality, assume max{(wTx)2 : x ∈ S} = 1 (by an
appropriate scaling). First we show (i). Since µ|S has no γ2-outliers, we have y ≥ 1

γ2 .
Applying the Chernoff bound to determine the probability that x̄ is not a good estimate
for y, we have

Pr[|mx̄−my| ≥ δmy] ≤ e−δ2my/3

This occurs with constant probability for m = O(γ
2

δ2 ).

Now we show (ii). Let T be as above, and again assume max{(wTx)2 : x ∈ S} = 1 without
loss of generality. If S has no γ2-outliers, then y ≥ 1

γ2 , and we would have found x̄ to be an
accurate estimate by the analysis in the previous paragraph. In this case, x̄ ≥ y

1+δ , and S

has no γ2-outliers implies max{(wTx)2 : x ∈ S} ≤ γ2y ≤ Γ2x̄. This then implies S ⊆ T .

Lemma 7 (Outlier Detection, Many Iterations) Fix w. Let m = O(γ
2

δ2 log b+log n
ε

δ )
Then either outlier removal algorithm restricted to w with parameter Γ2 produces a subset
of space T = {x : (wTx)2 ≤ t} (for some value t) such that, with constant probability,
(i) For any subset of space S that has no γ2-outliers along w, S ⊆ T .
(ii) (1 + δ)T has no (1 + δ)8γ2-outliers along w.

Proof: By “either outlier removal algorithm restricted to w”, we simply mean the one-
dimensional versions of the two algorithms. Consider S achieved by the deterministic om-
niscient version of the algorithm (restricted to w). Since our outlier removal algorithm only
throws away probability mass when necessary, this S is the largest possible restriction that
is γ2-outlier free. Define y and x̄ as in lemma 6. By lemma 6, we have that x̄ is a good
approximation to y. This ensures that with good probability, we identify S as Γ2-outlier
free, and so (i) is proved. It remains to show that, if our algorithm for some reason chooses
a substantially larger set T , then (1 + δ)T has no (1 + δ)8γ2-outliers.

Define Tα = {x : (wTx)2 ≤ α}. Suppose ∃α such that Tα has no Γ2-outliers. Then T(1+δ)α

has no (1 + δ)2Γ2-outliers. This follows from the fact that max{(wTx)2 : x ∈ T(1+δ)α} ≤
(1 + δ)2 max{(wTx)2 : x ∈ Tα} and E[(wTx)2 : x ∈ Tα] Pr[x ∈ Tα] is a monotonically
increasing function of α. This analysis holds whether we are considering the true underlying
distribution or just the samples.

Suppose we estimate that some set T = Tt has no Γ2-outliers (in which case the algorithm
might return T as an answer). Then our sample also leads us to calculate that Tα has no
(1 + δ)2Γ2-outliers for α ∈ [t, (1 + δ)t]. For every t, we will show that for some nearby
(within a factor of (1 + δ)) value of α, we correctly estimate the sample variance on the
restriction of µ to Tα. Since the range of possible values for t is at most 22(b+log n

ε
), we

can take every value of t = (1 + δ)k for some integral k and union bound over the at most
log1+δ 22(b+log n

ε
) = O( b+log n

ε
δ ) possible values for k.

We now show that if we estimate Tα to have no (1+δ)2Γ2-outliers, then with good probability
Tα actually has no
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(1 + δ)6Γ2-outliers with respect to the true distribution, and by our reasoning above, since
there is an α within (1 + δ) of t, T(1+δ)t is (1 + δ)8Γ2 outlier free.

We do this by showing that if Tα has a (1 + δ)6Γ2-outlier, then our sample shows Tα to
have at least a (1 + δ)2Γ2-outlier with good probability. Let Xi be the random variable
representing the squared distance of xi along the direction w, Xi = (wTxi)2. Without loss
of generality, assume α = 1. Define y and x̄ as in lemma 6 (but with Tα in place of S).
Then by assumption on Tα, y ≤ 1

(1+δ)6Γ2 . The condition that our samples show Tα to have
at least a (1 + δ)2Γ2-outlier is 1

m

∑
xi∈Tα Xi ≤ 1

(1+δ)2Γ2 . We apply the Chernoff bound,

Pr[
∑

Xi ≥ (1 + ∆)mE[Xi]] ≤ e−∆2mE[Xi]/3

where we have stated the Chernoff bound for the case that ∆ < 1. Let ∆ = 1
E[Xi](1+δ)2Γ2

−1

(this yields the correct event in our probability calculation). If ∆ < 1, then ∆2E[Xi] ≥ δ2

Γ2 ,
and the probability we do not correctly identify the furthest outlier is at most e−∆2mE[Xi]/3 =
O(1) for m = O(Γ2

δ2 ). If ∆ ≥ 1, then ∆E[Xi] ≥ δ
Γ2 , and the applicable alternate form of the

Chernoff bound yields that Pr[
∑
Xi ≤ m/γ2] is at most e−∆mE[Xi]/3 = O(1) for the same

setting of m.

Since there are only O( b+log n
ε

δ ) different values of α to consider, m = O(Γ2

δ2 log b+log n
ε

δ )
allows us to union bound over all the possible values of α. This shows that with constant
probability, if we estimate T to have no Γ2-outliers (in which case our algorithm might
return T ), then (1 + δ)T has no (1 + δ)8Γ2-outliers. This implies (ii).

We extend the analysis of lemmas 6 and 7 from a fixed direction to all directions and argue
the correctness of the entire algorithm by proving theorem 3.

Proof: Let S be the ellipsoid found by the deterministic algorithm (i.e. the outlier free
subset of points lies in this ellipsoid). Rather than considering the original space, consider
the transformed space where S (not E(MS)) is the unit sphere. Consider the many directions
w given by a δ′-grid over the sphere, δ′ = δ

n . We form this grid by choosing every w such
that the coordinates of w lie in {0, δn ,

2δ
n , . . . , 1}. By our choice of m, we can apply lemma

7 part (i) to each of these (nδ )n directions simultaneously. We then have that for every w in
the δ′-grid, max{(wTx)2 : x ∈ T} ≥ max{(wTx)2 : x ∈ S} (i.e., in this direction T contains
S). We now show that for an arbitrary direction w, (1 + δ)2T contains S.

Consider an arbitrary unit vector w. For every axis direction i, there are some vectors
w1
i and w2

i in the δ′-grid that are above and below w, but within distance δ/n. Since
T = Γ2E(M̄T ) is convex, the minimum distance of T from the origin between w1

i and w2
i is

given by 1− δ
n . Bounding over the maximum decrease in every axis direction gives that T

is at least distance 1 − δ from the origin in direction w. Since S is within 1 of the origin
everywhere, we have that (1+δ)T contains S, and therefore (1+δ)2T also contains S. This
concludes the proof of (i).

Now consider (ii). For every w in our δ′-grid, we have that (1+δ)T is (1+δ)8Γ2-outlier free
along w by lemma 7 part (ii). Consider an arbitrary unit vector w not in the δ′-grid. Denote
w’s n nearest neighbors within the δ′-grid by {wi}. Let w′i be the vector in direction wi
with length given by E[(wTi x)2 : x ∈ (1 + δ)T ] Pr[x ∈ (1 + δ)T ]. Then w′ defined similarly
is bounded away from the origin by the hyperplane formed by the {w′i} — this follows
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from the convexity of E(M(1+δ)T ). Combining this and the spacing of the δ′-grid as in the
previous paragraph, we find that the maximum drop in moving to w from wi is at most
(1− δ), i.e., E[(wTx)2 : x ∈ (1 + δ)T ] ≥ (1− δ) mini E[(wTi x)2 : x ∈ (1 + δ)T ].

Since (1 + δ)T is (1 + δ)8Γ2-outlier free along w, (1 + δ)T ⊂ Hw, where Hw is the halfspace
(really a slab) corresponding to w, Hw = {x : (wTx)2 ≤ (1 + δ)8Γ2E[(wTx)2 : x ∈ (1 +
δ)T ] Pr[x ∈ (1+ δ)T ]}. Let H =

⋂
wHw, the intersection of all the half-spaces. Then by the

same argument using the convexity of H and the spacing of the δ′-grid, for an arbitrary w,
max{(wTx)2 : x ∈ H} ≤ (1 + δ) mini max{(wTi x)2 : x ∈ H}. Our simultaneous lower bound
on the expectation for an arbitrary w and upper bound on the maximum for that same w
yield that H is (1 + δ)10Γ2-outlier free.

Using the same (δ′-grid) reasoning, we find that (1+δ)2T contains H, and therefore (1+δ)2T
is (1 + δ)12Γ2-outlier free.

Before stating the corollary for the running time, we mention that we still have not shown
that step 2 of either algorithm can be carried out with high probability. This will be done in
our final lemma of this section, lemma 8. Assuming lemma 8, we have the following bound
on the running time.

Corollary 1 (Running Time) The algorithm runs in time Õ( b
2n5

ε2δ4 ).

Proof: We have from section 3 that β = γ2 is at most Õ(bn/ε), and so we never need more
than m = Õ( bn

2

εδ2 ) samples. Plugging in this value for m to our bounds in the discussion
of running time at the beginning of section 4 yields that our entire algorithm runs in time
Õ( b

2n5

ε2δ4 ), which is the bound we referred to in the introduction. In this time we achieve a
1 +O(δ) approximation to the optimal value of β.

We now show that we can carry out step 2 of either algorithm with high probability. Addi-
tionally, we solve the following problem. Suppose that we are not given the parameter γ2,
but rather only ε, and asked to find the appropriate γ2. Lemma 8 will show that we can at
any point determine within a factor of (1 + δ) how much of the probability mass is within

a fixed ellipsoid. Since γ2 ∈ [1, Õ( bnε )], there are at most log1+δ Õ( bnε ) = log bn
ε

δ values of γ2

to consider (with a loss of at most a factor of (1 + δ) in the value we find for γ2). Therefore
we can simply try them all, estimating for each one whether this γ2 requires us to throw
away more than a (1 + δ)ε fraction of the distribution.

Thus, if the parameters (γ2, ε) are achievable for the deterministic algorithm, and we are only
given ε, we can find a subset of space space T ′ satifying parameters ((1+O(δ))γ2, (1+O(δ))ε).
Our asymptotic running time increases to Õ( b

2n5

ε2δ4 + 1
εδ3 ), which is an increase of no more

than a constant.

Lemma 8 (Probability Mass Location)
(i) Fix a direction w. Let our number of samples be m = O( 1

εδ2 ), and consider the squared
sample distances in direction w given by {(wTxi)2}. Let ȳ be the greatest y such that a
(1 + δ)ε fraction of our samples are above y. Then with constant probability, at least an ε
fraction of the distribution has squared distance along w of at least ȳ, and at most a (1+δ)2ε
fraction has squared distance along w greater than ȳ.
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(ii) Let E be an ellipsoid. Let our number of samples be m = O( 1
εδ2 ). Then if we estimate

a (1 + δ)ε fraction of our samples to be outside of E, with constant probability at most a
(1 + δ)2ε fraction is outside of E, and at least an ε fraction is outside of or on E.

Proof: First we show (i). Let yhigh = {y : Pr[(wTxi)2 ≥ y] = ε}. Let Yi be a random
variable, Yi = 1 iff (wTxi)2 > yhigh. The event that ȳ > yhigh is the same as

∑
Yi ≥

m(1 + δ)ε. We can upper bound the probability of this event using the Chernoff bound

Pr[
∑

Yi ≥ m(1 + δ)E[Yi]] ≤ e−δ
2mE[Yi]/3

which is constant for m = O( 1
εδ2 ). A similar calculation with ylow = {y : Pr[(wTxi)2 ≥ y] =

(1 + δ)2ε} shows that the probability of ȳ < ylow is at most a constant for the same value
of m.

The proof of (ii) is identical. By centering E, we can just consider distance of our samples
from the origin rather than the distance along a fixed w.

One consequence of the theorems in this section is that a sample of size Õ(n
2b
ε ) is enough

to estimate the inertial ellipsoid of any distribution (after removing at most an ε fraction)
and thus bring it into nearly isotropic position.

5 A Matching Lower Bound

We show that for any ε < 1/2 there exists a distribution µ such that, for any S satisfying
µ(S) ≥ 1− ε, there exists w such that

max{(wTx)2 : x ∈ S} ≥ β̄E[(wTx)2 : x ∈ S] Pr[x ∈ S] ≥ β̄

2
E[(wTx)2 : x ∈ S]

where β̄ = Ω(nε (b− log 1
ε )). Based on the comparison between our upper and lower bounds

on β in the case that we can’t throw out more than half the distribution

O

(
n

ε
(b+ log

n

ε
)
)

vs. Ω
(
n

ε
(b− log

1
ε

)
)

we describe our result as asymptotically optimal.

We motivate the construction of the worst case distribution by constructing three simpler
distributions, each of which proves a weaker lower bound. The strong lower bound will
follow from examining a distribution that is a composite of the three distributions showing
the weaker lower bounds.

To prove the first weak lower bound, let µ be the uniform distribution on the one-dimensional
points {20, 21, ...2b}. An illustration of this µ is given in figure 2, part A. We claim that
for any ε < 1

4 , the best achievable (i.e. smallest) β satisfies β = Ω(b). The proof is simple:
suppose the largest data point we keep is 2k. Then (ignoring the factor w since we are in
one dimension), max{x2 : x ∈ S} = 2k, while E[x2 : x ∈ S] ≤ 20+...2k

(b+1)(1−ε) = O(2k

b ). Since

β ≥ max{·}
E[·] , we find β = Ω(b).
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A:
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<−position

B:
1− 2ε 2ε

1/
√
ε1

C: D:

Figure 2: Lower Bound Constructions

To prove the next weak lower bound, we construct a distribution as in figure 2, part B. Let µ
be the probability distribution on one-dimensional points given by µ(1) = 1−2ε, µ( 1√

ε
) = 2ε.

Then for ε < 1
4 , neither point can be thrown away. Thus max{x2 : x ∈ S} = 1

ε , while
E[x2 : x ∈ S] = 3− 2ε, yielding β = Ω(1

ε ).

For the third weak lower bound, we let µ be a distribution on n-dimensional space. In
particular, let µ be the uniform distribution on n points, one on each coordinate axis, each
one at unit distance from the origin, as illustrated in figure 2, part C. For ε < 1

2 , we do
not throw away any points on at least n/2 of the axes. Then for w a unit vector along
one of the axes where the point is not thrown away, we have max{(wTx)2 : x ∈ S} = 1,
E[(wTx)2 : x ∈ S] = 4

n , and thus β = Ω(n).

The composite construction that we use to prove our strong lower bound in illustrated in
figure 2, part D. We obtain the composite distribution by taking the distribution of part A,
and making two copies that are weighted and translated as the two points are that compose
the distribution of part B. We then place a copy of this new one-dimensional distribution
along each axis, as in the distribution of part C. We now restate this construction formally
and proceed to analyze it.

Fix n, ε and b′ = b
2 −

1
4 log 1

ε . Let µ be a copy of the following distribution along each axis.
Let there be 2b′ points at distances

20, 21, . . . , 2b
′−1,

2b
′

√
ε
,
2b
′+1

√
ε
, . . .

22b′−1

√
ε

and consider the distribution that places a (1−2ε) fraction of the probability mass uniformly
on the first b′ points and a 2ε fraction uniformly on the remaining b′ points. This distribution
satisifes that the maximum bit length along an axis is log 22b′

√
ε

= b.

There are many ways of choosing a subset S of this distribution, but we can quickly restrict
the set of possible choices. First we show that it never helps to treat the different axes
asymmetrically for a distribution that is concentrated on the axes. Suppose that this
statement is not true. We begin by noting that for a distribution concentrated on the axes
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and fixed S, the vector w that maximizes

max{(wTx)2 : x ∈ S}
E[(wTx)2 : x ∈ S] Pr[x ∈ S]

always occurs on an axis. Let µ1 be a distribution on which it is possible to throw out an
ε fraction of the distribution and achieve parameter β̄. Further suppose that this ε is the
minimum ε such that this β̄ is achievable, and the only S achieving β̄ is asymmetric. Let
axis i be an axis that this maximum outlier occurs on, and suppose that along axis i we
throw out an εi fraction of the total distribution. If εi ≤ ε/n, then let S′ be the subset
of µ1 where we throw out the same points along every axis that we threw out along axis
i in S. Then we have ε′ = nεi ≤ ε, and yet S′ achieves β̄ along each axis, contradicting
the assumption that there was no symmetric subset we could throw out achieving the same
(ε, β̄). If εi > ε/n, then there is some other axis j such that along axis j we throw out an
εj < εi fraction of the probability distribution, but achieving β̄j ≤ β̄ along that axis (i.e.
max{xj : x ∈ S} ≤ β̄jE[x2

j : x ∈ S] Pr[x ∈ S]). Constructing S′′ by taking S and replacing
our choice of points to throw out along axis i with the points thrown out along axis j then
yields a contradiction because ε′′ < ε. Thus we can restrict our attention to S symmetric.

For any direction w along an axis, the projection onto w of any point on the other n − 1
axes is 0, so we obtain

E[(wTx)2] =
1
n

E[x2, µ one-dimensional]

We ignore the factor of n for the rest of the proof and restrict our attention to a single
coordinate axis. Suppose the furthest point kept by S achieving parameters (ε, β̄) is the
point with exponent k. By our choice of distribution, we cannot have thrown out more than
half the points with a 1√

ε
factor, and so we have max{x2 : x ∈ S} = 22k

ε , k > b′. Calculating
the expectation

E[x2 : x ∈ S] Pr[x ∈ S] ≤ 1− 2ε
2b′

(20 + 22 + . . .+ 22b′−2) +
2ε
2b′

1
ε

(22b′ + 22b′+2 + . . .+ 22k)

≤ 22b′−1

2b′
+

22k+1

b′
≤ 22k+2

b′

yields that β̄ ≥ b′

4ε for the one-dimensional case. Thus our lower bound in the n-dimensional
case is

β̄ ≥ n

8ε
(b− log

1
ε

)

6 An Approximation Algorithm

We showed earlier in the paper that for any distribution µ, and any ε we can achieve
β = O(nε (b+ log n

ε )). A question that naturally arises is how well we can do on a particular
distribution compared to the best possible on that particular distribution. Formally, given
µ and ε, we seek S minimizing β subject to the constraints that

(i) µ(S) ≥ 1− ε

(ii) ∀w,max{(wTx)2 : x ∈ S} ≤ βE[(wTx)2 : x ∈ S]
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This is really a bicriteria approximation problem with parameters (β, ε). Note that in this
case, we are looking for the normalized probability distribution to be β-outlier free. We
exhibit a ( 1

1−ε , 1)-approximation algorithm for this task in the case that we are given the
distribution explicitly. If we can only sample from the distribution µ, our algorithm yields
a ( 1

1−ε + δ, 1 + δ)-approximation for any constant δ > 0 with high probability.

Lemma 9 (Preservation of Outliers) Let µ be a distribution. Any β-outlier for µ is at
least a β(1− ε)-outlier with respect to any subset S satisfying µ(S) ≥ 1− ε.

Proof: Let x be a β-outlier in the original distribution. Then for some w, (wTx)2 >
βE[(wTx)2] For any S, we have E[(wTx)2 : x ∈ S] Pr[x ∈ S] ≤ E[(wTx)2] and so x satisfies
(wTx)2 > β(1− ε)E[(wTx)2 : x ∈ S]

The approximation algorithm is simply either algorithm described in section 4, with error
parameter δ in the case that we are sampling from µ. We could determine the optimal β for
a fixed ε through a binary search. Suppose the value βOPT is achievable by the restriction of
µ to some S satisfying µ(S) ≥ 1− ε. Anytime our algorithm sees a point that is a β′-outlier
with respect to the unnormalized distribution, β′ > βOPT

1−ε , we know that this cannot be a
(≤ βOPT )-outlier under any restriction of µ by lemma 9. So this point will have to be thrown
out by the optimal solution. Thus running our algorithm with β = βOPT

1−ε forces us to throw
away no points that the optimal solution does not also throw away. This yields that we
achieve a 1

1−ε -approximation in the case of an explicitly provided distribution. Correctness
and running time are clear from the preceding discussions.

There is a more direct method that in fact finds an approximation to β for every ε in one
pass. The algorithms of section 2 can be used to define an outlier ordering of a point set,
namely, the first point that is an outlier, the second point, etc. Now to approximate the
best possible β for a particular value of ε we simply remove the initial ε fraction of the
points in the outlier ordering.

7 Standard Deviations from the Mean

We prove a variant of our theorem that shows we can find a large subset of the original
probability distribution where no point is too many standard deviations away from the
mean.

Corollary 2 (Standard Deviations from the Mean) Let µ be a probability distribu-
tion on Inb . Let S be a subset of space. Denote by µ(S) the probability that x chosen
according to µ is in S. Let x̄ = E[x : x ∈ S] and σ2

w = E[(wT (x − x̄))2 : x ∈ S]. Then for
every ε > 0, there exists S and

β = O

(
n

ε
(b+ log

n

ε
)
)

such that
(i) µ(S) ≥ 1− ε
(ii) max{wT (x− x̄) : x ∈ S} ≤

√
βσw for all w ∈ Rn
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Proof: The proof of the corollary is much like the proof of theorem 1, but with two
additional steps. In the first step, we show that translating µ so that the origin coincides
with the mean does not increase the volume of the primal inertial ellipsoid. In the second
step, we show that running the algorithm with our value of b doubled suffices to preserve our
dual volume bound. These steps taken together with our previous analysis imply corollary
2.

In order to analyze the volume of the primal inertial ellipsoid, consider the radius r of
the primal inertial ellipsoid in a fixed direction w. Implicitly taking all expectations with
respect to the restricted probability distribution µ|S , and letting xw be the value of the
projection of x onto w, we have r2 = E[x2

w]. Suppose we choose to translate our origin to a
value z along w. We then have r2 = E[(xw − z)2]. Single variable calculus shows that the
value minimizing r is z = E[xw], which is just the mean. Thus translating our origin to x̄
minimizes the radius of the primal inertial ellipsoid in every direction simultaneously. Since
our analysis in the proof of theorem 1 relied upon showing shrinkage of the primal ellipsoid
(growth of the dual ellipsoid), the algorithm that at each step translates the origin to the
new mean concludes at least as quickly, throwing out no more probability mass overall.

It may be that at some point our mean is not an element of Inb . We show that even in this
case our dual volume bound still holds. Suppose that at some step the criterion for step 2
of either algorithm is met for axis i, but with the value of b doubled. Then we throw out all
x with xi ≥ 2−2b (where our mean has xi = 0). Not all the remaining elements necessarily
have xi = 0, but they do all necessarily have the same xi value, because two elements of Inb
cannot have distinct values for a particular coordinate that differ by less than 2−2b. So the
dimension does collapse. Our dual volume bound only required the guarantee that in every
non-collapsed dimension at least an ε

3n fraction of the points have coordinate value at least
2−2b. This concludes the proof of corollary 2.

We now show that the 1
1−ε -approximation algorithm of section 6 naturally extends to a(

1−ε
1−2ε

)2
-approximation algorithm in the setting where we measure outlierness with respect

to the mean, rather than a fixed origin. To establish this, it suffices to prove the following
analogue of lemma 9.

Lemma 10 (Outlier Preservation Variant) Let µ be a distribution. As in Corollary
2, measure outlierness by squared distance from the mean rather than from a fixed origin.
Suppose x0 is a β-outlier for µ, and no other point is a β′-outlier for β′ > β. Then x0 is

at least a β
(

1−2ε
1−ε

)2
-outlier with respect to any subset S satisfying µ(S) ≥ 1− ε.

Proof: As in the proof of lemma 9, consider w such that (wTx0)2 > βE[(wTx)2], and let
β = γ2. The difference between this bound and the bound of lemma 9 will result from
the mean possibly moving closer to x0 after removing other points {x′}. Without loss of
generality, let the mean of µ be the origin, and let E[(wTx)2] = 1.

Suppose we remove some set of points {x′}, resulting in a decrease in E[(wTx)2 : x ∈
S] Pr[x ∈ S]. The mean may also move towards x0. If the points {x′} are different, then the
mean would shift by the same amount, while E[(wTx)2 : x ∈ S] Pr[x ∈ S] would decrease by
less, if we could remove a point of the same probability mass located at the average of the
{x′}. Thus it suffices to consider removing a single point x′ for the purposes of our bound.
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If we remove a single point x′ of probability weight ε, we find that the distance of x0 from
the mean goes to γ − εx′

1−ε , while E[(wTx)2 : x ∈ S] Pr[x ∈ S] becomes 1−εx′2
1−ε . By the

assumption that no point x′ is initially further away from the mean than x0 (along w) we

can upper bound x′ by γ. Then the ratio of (γ − εx′

1−ε)
2 to 1−εx′2

1−ε is at least γ2
(

1−2ε
1−ε

)2
.
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8 Implementation

Let X be an n×mmatrix whose columns are the points of our distribution. Let m,beta,epsilon
be the values for m,β, ε, and let the boolean variable done indicate whether we are finished
removing outliers. In the case that X is full dimensional throughout the algorithm (a com-
mon case), a complete implementation is given by the following matlab code:

done = 0
while(~done)

done = 1
M = X*X’/m
Y = M^(-.5)*X %% Y is isotropic version of X
for i = 1:m, %% remove current outliers

if Y(:,i)’*Y(:,i) > beta, X(:,i)=0, done = 0, end
end

end

Handling dimension dropping adds a few more lines of code.

A java applet illustrating the outlier removal algorithm is available at
http://theory.lcs.mit.edu/~jdunagan/
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