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Abstract

We study the problem of finding an outlier-free subset of a set of points (or a
probability distribution) in n-dimensional Euclidean space. As in [BFKV 99], a point z
is defined to be a B-outlier if there exists some direction w in which its squared distance
from the mean along w is greater than g times the average squared distance from the
mean along w. Our main theorem is that for any € > 0, there exists a (1 —¢€) fraction of
the original distribution that has no O(% (b+log 7 ))-outliers, improving on the previous
bound of O(n"b/e€). This is asymptotically the best possible, as shown by a matching
lower bound. The theorem is constructive, and results in a 1; approximation to the
following optimization problem: given a distribution g (i.e. the ability to sample from
it), and a parameter ¢ > 0, find the minimum [ for which there exists a subset of
probability at least (1 — €) with no (-outliers.

1 Introduction

The term “outlier” is a familiar one in many contexts. Statisticians have several notions
of outliers|[BG 97, DG 93]. Typically they quantify how far the outlier is from the rest of
the data, e.g. the difference between the outlier and the mean or the difference between
the outlier and the closest point in the rest of the data. In addition, this difference might
be normalized by some measure of the “scatter” of the set, e.g. the range or the standard
deviation. Data points that are outside some threshold are labelled outliers.

Identifying outliers is a fundamental and ubiquitous problem. The outliers in a data set
might represent experimental error, in which case it would be desirable to remove them.
They could affect the performance of a computer program, by slowing down or even mislead-
ing an algorithm; machine learning is an area where outliers in the training data could cause
an algorithm to find a wayward hypothesis. Even from a purely theoretical standpoint, re-
moving outliers could lead to simpler mathematical models, or the outliers themselves might
constitute the phenomenon of interest.

How does one find outliers? To address this question we have to first answer another: what
precisely is an outlier? In this paper we will assume that the data consists of points (or a
distribution) in n-dimensional Euclidean space. In the one-dimensional case, one could use
one of the definitions alluded to above, viz. a point is an outlier if its distance from the
mean is greater than some factor times the standard deviation. In figure 1, the top data
set depicts this definition: the data points are the solid circles, and the mean, along with
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the mean plus or minus one standard deviation, are the hash marks. The leftmost point is
1.86 standard deviations away from the mean.

The following generalization to higher dimensions was used in [BFKV 99]. Let P be a set
of points in R™. A point x in P is called a (-outlier if there exists a vector w such that the
squared length of z along w is more than 3 times the average squared length of P along w,
ie. if
(') > BEyepl(w!z)?

Note that (w”z)? is the squared distance along w from the origin. In figure 1, the bottom
two pictures show how different points may be the furthest outliers for different choices of
w. In each graph, the solid circles are the data points, the line is the direction w, and the
hash marks along the line are the projections of the data points onto the line.

Figure 1: Defining Outliers

This definition of an outlier in R™ has a long history in statistics and machine learning. An
equivalent definition using terminology from the field of machine learning is “a point is a
v2-outlier if it has Mahalanobis distance greater than v.” A statistician might say “after
normalizing by the covariance of the data, the point is more than ~ away from the origin.”
The constructive procedure for identifying outliers in section 2 shows the equivalence of our
definition to these two other definitions.

The first problem we address is the following: does there exist a small subset of (a point
set) P whose removal ensures that the remaining set has no outliers? More precisely, what
is the smallest § such that on removing a subset consisting of at most an € fraction of P,
the remaining set has no -outliers (with respect to the remaining set)?

A natural approach is to find all S-outliers in the set and remove them. This can be done
by first applying a linear transformation (described in section 2) that results in the average
squared length of the distribution being 1 along every unit vector (the so-called isotropic
position). Isotropic position has been used to speed up random walks in [LKS 95]. Bringing
a distribution into isotropic position allows us to identify outliers easily. Now a point that is



a (-outlier simply has squared length more than 5. The main difficulty is that the remaining
set might still have outliers — it is possible that points that were previously not outliers
now become outliers. Can this happen repeatedly and force us to throw out most of the
set?

Our main result is that the answer to this question is “no” for a surprisingly small value of j.
We present it below in a more general framework. Let Z;' denote the set of n-dimensional
b-bit integers, {1,... ,Qb}". In place of the point set P in the discussion above we have
any probability distribution p on Z;'. For a probability distribution s, let ;(.S) denote the
probability of a subset of space S.

Theorem 1 (Outlier Removal over Integer Support) ! Let  be a probability distri-
bution on Z'. Then for every e > 0, there exists S and

B=0 (g(b+log%))

such that

(i) p(8) > 1 ¢
(ii) max{(wTz)?: z € S} < BE[(wTz)?: 2 € S] for allw € R™

The proof of theorem 1 (section 4) is constructive. Before proving theorem 1, we will
prove a similar theorem about distributions with arbitrary support (theorem 2, section 3).
Although the hypothesis on the support of the distribution in theorem 2 is much weaker,
we need an additional assumption. The proofs of theorems 1 and 2 make use of the same
principal idea.

In section 2, we describe (two variants of) an algorithm for outlier removal. The theorems
can be proven using either variant. Although the theorems are not obvious, the algorithm
is extremely simple. To convince the reader of this, we include a matlab implementation of
the algorithm in section 11.

For a point set with m points (m > n) the algorithm runs in O(m?n) time. In section 5
we show that the algorithm can also be used on an unknown distribution if it is alNIOWQed
to draw random samples from the distribution. The number of samples required is O("?b)

and the running time is O(b:gf) for accuracy (14 9).

One variant of our algorithm is identical to the algorithm of [BFKV 99], the immediate
inspiration for our work. The bound on (3 in theorems 1 and 2 improves on the previous
best bound of O(”%b) given in [BFKV 99]. There it was used as a crucial component in the
first polytime algorithm for learning linear threshold functions in the presence of random
noise. Due to the high value of 3, the bound on the running time of the learning algorithm,
although polynomial, is a somewhat prohibitive O(nzg). In contrast, our theorem implies
an improved bound of O(n®) for learning linear thresholds from arbitrary distributions in
the presence of random noise. Further, our bound on 3 is asymptotically the best possible.
This is shown in section 6 by an example where for any € < %, a bound on (8 better than
Q(Z(b —log 1)) is not possible.

Our main theorem gives an extremal bound on . A natural follow-up question is the com-
plexity of achieving the best possible 3 for any particular distribution. Given a distribution

! An early version of this work[DV 01] claimed a slightly different version of theorem 1 with an insufficiently
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w and a parameter €, we want to find a subset of probability at most € whose removal leaves
an outlier-free set with the smallest possible 3. We show this question to be NP-hard even
in the one-dimensional case by a reduction to subset-sum. In section 7, we prove that our

algorithm achieves a (lie)—approximation to the best possible 3 for any given e.

In some cases, it may be desirable to translate the data set so that the origin coincides with
the mean, rather than having a fixed origin. We prove the following corollary for standard
deviations from the mean in section 8. Let p be a probability distribution on Z;'. Then for
any € > 0, there exists a (1 — €) fraction of the distribution such that along every direction,
no point is further away from the mean than O(,/% (b + log 2)) standard deviations in that
direction. We also give a (1 )-approximation algorithm for the corresponding optimization
problem.

In section 9, we prove a theorem describing a connection between outlier removal and robust
statistics. In section 10, we conclude by proving some technical properties of matrices that
are used elsewhere in the paper.

2 Algorithms for Outlier Removal

The first question we address is that of detecting outliers. Since our definition of a y2-outlier
involves all directions, it might not be obvious that this can be done in finite time.

In order to detect outliers, we use a linear transformation. Let M = E[zz’] where z is a
sample drawn according to the probability distribution p. If M is positive definite, there
exists a matrix A such that M = A%, Consider the transformed space z = A~ 'z. This
transformation preserves outliers: if z is a G-outlier in direction w in the transformed space,
the corresponding & = Az is a B-outlier in direction w’ = A~ w in the untransformed space,
and vice versa. The transformed distribution is in isotropic position [LKS 95|, and we will
refer to the transformation as rounding. Such transformations have previously been used
in the design of algorithms to make geometric random walks more efficient [LKS 97]. If M
does not have full rank, it is still positive semi-definite, and we instead round g in the span
of M. For those familiar with the definitions of Mahalanobis distance or normalizing by the
covariance of the data set, this transformation shows the equivalence between our definition
of an outlier and these two other definitions.

For an isotropic distribution, any point x that is an outlier for some direction w is also
an outlier in the direction x. This follows from the fact that an isotropic distribution has
E[(wz)?] = 1 for every w such that |w| = 1, and that the projection of the point = on to
a direction w is greatest when w = x/|x|. Thus, outlier identification is easy for isotropic
distributions.

The first algorithm has the following simple form: while there are -outliers, remove them;
stop when there are no outliers. In the description below, u is the given distribution and
B = ~2, where the exact value of 3 is specified in the proofs of theorems 1 and 2.

Algorithm 1 (Restriction to Ellipsoids):

1. Round p. If there exists x such that |z| > v, let S = {z : |z| < v}. Retain only points
in S.

2. Repeat until the condition is not met.



Algorithm 1 is identical to the outlier removal algorithm of [BFKV 99]. The following
variant of the above algorithm will be significantly easier to analyze. Whereas in the previous
algorithm we removed outliers in every direction in one step, in Algorithm 2 we only remove
outliers in one direction per step.

Algorithm 2 (Restriction to Slabs):
1. Round p. If there exists a unit vector w such that max{(w?x)?} > 2, let S = {x :
(w'z)? < ~+2}. Retain only points in S.

2. Repeat until the condition is not met.

3 Outlier Removal over Arbitrary Support

We will prove the following theorem about outlier removal over a distribution with arbitrary
support before proceeding to prove theorem 1. We refer to conditions (I, IT) in the hypothesis
of theorem 2 as the full-dimensional condition. In theorem 1 we will remove this condition,
replacing it only by a condition on the support of the distribution.

Theorem 2 (Outlier Removal over Arbitrary Support) Let p be a probability distri-
bution on R" satisfying

(I) ¥ unit vector w, J(@Tz)*dp < R?

(1I) ¥ unit vector w, VS:pu(S)>1-¢ [q(@Tz)?dp > 2

Then for every € such that 0 < € < €, there exists S and
such that

5:0(2mf)
(i) p(S) 21—

(ii) max{(wTx)?: z € S} < BE[(wTz)? : 2 € S] for all w € R™

To prove the theorem, we analyze the set S returned by either algorithm. This set S is
clearly (-outlier free. It remains to show that we do not discard too much of the distribution.
The main idea of the proof is to show that in every step the volume of an associated dual
ellipsoid increases. By bounding the total growth of the dual ellipsoid volume over the
course of the algorithm, we will deduce that no more than a certain fraction of the original
probability mass is thrown out before the algorithm terminates.

Towards this end, we will need some definitions. For a matrix M such that M = A?, define
the ellipsoids E(M) and W (M) as

EM)={x:|A 2| <1} and W(M)={z:|Az|<1}.

We will refer to E(M) and W (M) as the primal inertial ellipsoid and the dual ellipsoid
respectively. For any subset S of R", we denote by Mg the matrix given by

Mg = Z,u(m):m;T = E[zz” : 2 € S]Prz € 5]
xeS



In other words, Mg is the M obtained after restricting p to S (zeroing out points outside
of S, not renormalizing the distribution). We denote this restricted probability distribution
directly by ps. Throughout this chapter, pug will denote a restriction of p to the subset of
space S, never a new and unrelated distribution. The useful property attained by rounding
with respect to pug (the restriction of the original distribution to S) is that

E[(w'z)? 2z € S]Prjz € S] =1

for every unit vector w, where the expectation and probability are with respect to z drawn
from p. We will actually prove theorem 2 with E[(w”xz)? : x € S]Pr[z € S] in place of
E[(w”x)?]. Note that this is a stronger statement than the original theorem. Let x € pg
denote z € S : p(x) > 0, and let span(ug) denote the span of {z € ug}.

We will also need the following elementary facts about ellipsoids: the volume of a full-
dimensional ellipsoid is given by the product of the axis lengths times the volume of the
unit ball, which we will denote by f(n). The ellipsoid {z : |[A~1z| < 1} has axes given by the
singular vectors of A. The axis lengths of W(M) and E(M) are given by the singular values
of A=! and A, and so they are reciprocals. It follows that Vol(W (M))Vol(E(M)) = (f(n))?,
a function solely of the dimension.

Lemma 1 relates the dual volume growth to the loss of probability mass, and lemma 2 upper
bounds the total dual volume growth.

Lemma 1 (Restriction to a Slab) Let v be fized, and let p be a full-dimensional
isotropic distribution. Suppose Jw,|w| =1 such that

max{(w’z)’} > *E[(w’)?]
Let S = {z: (wl'z)? <~2} and p=Pr[z ¢ S]. Then

Vol(W(Ms)) > e’ /2Vol(W(M))

Proof: Let a®> = E[(w?x)?: z € S] Pr[x € S]. Starting from the identity
E[(w'2)?] = Byes|(w' @)’ Prlz € S] + Bpgs[(w' )’ Prlz ¢ 5]
and using that (w?z)? > ~? for all  not in S, we get that 1 > a? 4+ 72p, which implies
a2 <1—7?p<e?

We now construct a vector w’ of length 1/a belonging to the dual ellipsoid of pg. Letting
w' = w/a suffices since w is a unit vector by assumption and

a? = E[(w'z)? 1z € S]Pr[z € S] = w Msw
= 1= w’TMSw’ = w € W(My)
We also show that every v € W (M) also belongs to W(Mg). We have

Mg =M — Zu(x)xxT.
xS



Hence,
v Mgv = vT Mv — Z p(z) vl zatv
xS

=o' My — Z pw(z)(vTz)? <oTMv <1
xS

implying that v € W(Mg) (the last step is from the assumption that v € W(M)). The
length of a point on the boundary of an ellipsoid lower bounds the length of the longest
axis. Since at least one axis of the dual ellipsoid has length 1/a, and all the other axes have
length at least 1, Vol(W (Mg)) > (1/a2f(n) while Vol(W(M)) = f(n), implying the dual
volume grows by at least a factor of € /2. This concludes the proof of lemma 1. |

Note that if we desire to apply the lemma to analyze the result of a later iteration of
Algorithm 2, where pr goes to urng, we simply replace the starting identity by

E.cr[(wlz)) Prlz € T] = Eyerns|[(w! z)?| Prlz € TN S] + EweT\S[(wa)Q] Prlz € T\ S|

The analysis and conclusion remain the same.

Lemma 2 (Dual Volume Growth) Let p be a distribution satisfying

(1) ¥ unit vector w, J(@Tz)?dy < R?

(II) V unit vector w, VS :pu(S)>1-¢€ [g(@Tz)’dy > 12
For any S*, let ug~ be the restriction of u to S*. Assume p(S*) > 1—¢€. Then

f(n)
Vol(W(M)) = “Rn

Vol(W(Ms.)) < fﬁf)

Proof: First we lower bound the initial dual volume, Vol(W (M)). Consider any vector v
of length at most 1/R. We have

v Mv = E[(vTz)?] = /(vTx)Qdu < (v*R?*) <1

so v belongs to the dual ellipsoid. Thus the dual ellipsoid initially has volume at least
f(n)/R".
Next we upper bound Vol (W (Mg-)). Consider any vector v of length more than 1/r. Then

vl Mgv = / (vTx)2dp > (v*r?) > 1

Thus v is not in W(Mg-), and thus the ultimate volume of the dual ellipsoid is no more
than the volume of the sphere of radius 1/r, yielding the claimed upper bound. |



In the proof of theorem 2 below, g+ will be the final distribution resulting from application
of either algorithm. Using lemmas 1 and 2, we prove that Algorithm 2 terminates with
S = 5* satisfying theorem 2.

Proof of Theorem 2: Let 8 =42(In £ 4+1). Suppose that the algorithm terminates with
subset S* after having thrown out no more than € of the original probability mass. Then
we have that for every w,

max{(w'z)?: z € $*} < V*E[(w'z)?: z € S| Pr[z € S*]

We remind the reader again that normalizing g« so that it is a probability distribution
on points from p, rather than with points outside of S* replaced by zeros, increases the
right-hand side of this inequality by the factor 1/u(S*), but does not increase the left-hand
side. Thus the inequality will still be true even if we normalize ug«. We thus achieve a
(B-outlier free subset with

R
B=72=4"1I" 1 1)
€ r
It now remains to show that ¢ < ¢, i.e. that we do not throw out more of the probability

mass than claimed. Suppose that during the " iteration of the algorithm through step 1, a
p; fraction of the original points are thrown out. Then the total amount thrown out is > p;.

2
By lemma 1, the total amount of dual volume increase is [, ePiV/2 = o5 Xpi, Comparing
this to our bound on the total increase in the dual volume from lemma 2 yields

R

eéZpi < (7)71 _ 6nln%
r
14, 1, n R, R
= =—-(4-In—) <nln—
= e 2(6nr)e_nnr
= <¢/2

The one remaining catch is showing that € < €, since we relied on this in applying lemma 2
above. By slight overloading of notation, we let ¢ denote the cumulative probability mass
that has been removed at any point during the algorithm. Suppose for the purpose of
establishing a contradiction that in iteration j, ¢ < €, but then in iteration j + 1, ¢ > &
Then on step j, we can apply lemma 2, and from the analysis above, € < €/2 < &/2.
However, in any single iteration, the maximum probability mass the algorithm might throw
out is 1/4%, as can be seen from the proof of lemma 1:

a?<1—-9* = 0<1-7% = p<1/y?

Thus in one step ¢ increase by at most ¢/[4n(In(R/r) + 1)] < §, and so on step j + 1, we

still have ¢ < €. This concludes the proof of theorem 2. |

We now give an alternate proof of theorem 2 using the construction given by Algorithm 1.
We begin by proving an analogue to lemma 1.

Lemma 3 (Restriction to an Ellipsoid) Let v be fized, and let u be a full-dimensional
isotropic distribution. Let S = {x : (z7x) <~%} and p=Pr[x ¢ S]. Then

Vol(W(Ms)) > e’"/2Vol(W(M))



Proof: First we establish the tradeoff for a radially symmetric distribution, and then we
show that a radially symmetric distribution is the worst case for the tradeoff we want.

Let i/ be a radially symmetric distribution, and define M’, S, and p as above. We then
calculate the increase in Vol(W(M')). Let a* = E,/[(w :Jc)2 :x € S)Pr[z € S] for any
w,|w| = 1. From the center of an n-dimensional sphere of radius v, the projection of
the sphere on to any direction is sharply concentrated around «y/+/n, and the squared
expectation is exactly v2/n. Using the identity

E[(w'2)*] = Bygs[(w' @)’ Prla ¢ S] + Boes[(w )’ Prlz € 5]

as in the proof of lemma 1, but now for any w, we deduce 1 > a? + v2p/n, and thus

n/2
(1 _ W) < e~ 7°P/2

n

As in the proof of lemma 1, we observe that W (Mg) includes a vector of length 1/a in the
direction of w. Since this is now true for every w, the dual ellipsoid volume increases by at
least a factor of (1/a)™. This shows that in the case of a radially symmetric distribution,

Vol(W(Mg)) > e /2V ol (W (M))

Now we show that a radially symmetric distribution is the worst case for the tradeoff we
want. Suppose there were some isotropic, full-dimensional distribution p for which the
statement of the lemma was not true. We construct a new isotropic, full-dimensional and
radially symmetric distribution p’ for which the statement is also false.

We begin by noting that every point thrown out from g is also thrown out from any rotation
of p — this just follows from the fact that p is isotropic. Let p’ be the expectation of pu
under a random rotation. That is, 4’ is a radially symmetric distribution such that the
probability of choosing x from p’ at distance less than r from the origin is exactly the same
as the probability of choosing x from p at distance less than r from the origin, for every r.
Let M’ correspond to p'.

Consider an axis direction w; of E(Mg), |w;| = 1. We have a? = E[(w!z)? : 2 € S]Pr[z €

S]. For E(Myg), denote the axis length for any axis (also just the radius of E(Mg)) by a.
We find from the construction of i/ that

:Tllzn:E[(szx) cx € S]Prjxz € S] = Za

One way to visualize this equality is to take p and simply consider fi achieved by averaging
over rotations of the axes of p onto the other axes of p; since this is a discrete set of
rotations, it is clear that the squared axis lengths of ji are just the arithmetic averages of
the squared axis lengths of u. Then we can make 1 into p/ by taking a continuous set of
rotations, without affecting the axis lengths from ji.

We now consider the volume of E(MY). We have

Vol(E(Mg)) = f(n) [[a = f(n)

1=1

Ms)




using the arithmetic mean-geometric mean inequality. This implies that Vol(W (Mg)) >
Vol(W(Mg)). This concludes the proof of lemma 3.

Finally, we prove that Algorithm 1 terminates with S satisfying theorem 2.

Proof of Theorem 2: As in the proof of theorem 2 using Algorithm 2, let 3 = 4% (In §+1).
Lemma 2 still holds. The rate of increase in the dual volume as we throw out probability
mass (lemma 3) is the same as before (lemma 1). The only thing we need to address is
what we called “the one remaining catch” in the proof using Algorithm 2. Our bound on
the amount of probability mass that can be thrown out in a single step is no longer 1/72,
but is now n/y% However, n/y? = ¢/[4(In(R/r) + 1)] < § just as before. This concludes
the analysis of Algorithm 1. |

The following connection shows that the success of either algorithm implies that they both
succeed. If our criterion for a point x to be a B-outlier in a direction w were instead that

(wTz)? > pE[(wl'z)? : £ € P|Pr[z € P]

then Algorithms 1 and 2 both throw out the exact same points, and so must yield the same
bound on 3 as a function of e. To see this, note that any [-outlier under this definition
remains a (J-outlier as further points are removed, and so will have to be removed itself
eventually. Also, no point is ever removed unless it currently is a (-outlier. Thus the
two algorithms throw out exactly the same set of points in the end under this alternative
definition of an outlier. In section 7, we develop this observation into an approximation
algorithm for the problem of outlier removal using the standard definition of a [-outlier
(not this alternative definition).

We pause to stress what we have gained by allowing some points of the distribution to
be removed. If we force ¢ = 0, then even under the hypothesis of theorem 2, § may be
unbounded. Even a radially symmetric distribution satisfying the hypothesis with support
in {Br\ B, 5}, where Bg denotes the ball of radius R, might have 3 as large as

R2
ﬁ:

r2

By allowing ¢ > 0, we have achieved

g=1"mE
€ T

4 Qutlier Removal over Discrete Support

While theorem 2 might suffice for many applications, it is indeed possible that during outlier
removal on an arbitrary set, the full-dimensional condition might be violated (indeed, the
dimensionality of the remaining set might decrease). In this section we prove the following
theorem, which shows that for distributions over integers, the full-dimensional condition is
entirely unnecessary.

10



Theorem 1 (Outlier Removal over Discrete Support) Let p be a probability distri-
bution on Z;'. Then for every e > 0, there exists S and

g=0(2b+10g"))

such that

(i) p(S) > 1 —¢
(i3) max{(wTx)?: z € S} < BE[(wlz)? : x € S] for all w € R™

The proof of this theorem presents two difficulties that were not present in the proof of
theorem 2. First, ;4 might initially lie entirely on a lower-dimensional subspace, or p might
lie on a lower-dimensional subspace after the removal of a few points. Secondly, even if
the distribution does not lie on a lower-dimensional subspace, we do not have the same
lower bound on the smallest singular value of the distribution (singular value of the matrix
M associated with p). While we insisted in the hypothesis of theorem 2 that the smallest
singular value must be at least 1/r, which will be roughly equivalent to 2% in the discrete
case, it may be that the smallest singular value is actually 27", as the following example
makes clear.

Example 1 Let B = 2°, and let each row of the matriz below represent a point in space.
Denote the first n — 1 rows by {vi}?:]l and denote the last row by p.

B -1

1

This set of points is clearly full-dimensional, and in most directions the singular values are
on the order of B. However, in the direction w = [B~", B~"*1 ... B~1 1], we find that
(wTv;)? = 0 while (wTp)? = B™™ = 27", Since w > 1, the singular value is actually

slightly less than 27",

Example 1 shows that even disregarding issues of the distribution not being full-
dimensional, we cannot use theorem 2to treat the distribution with integer support unless we
are willing to settle for § = é(”%b) In extending our techniques to prove theorem 1, we will
show that although one singular value may be small, they are not all small simultaneously
in an appropriate amortized sense.

The first thing we shall define is a potential function that generalizes the dual ellipsoid
volume we used in the proof of theorem 2. This potential function will account for the
distribution u being concentrated on a lower dimensional subspace, or even the possibility
that p is simply quite close to a lower dimensional distribution. We begin by defining the a-
core of a distribution to be that subset of the distribution which lies on a subspace spanned
by every large subset of the distribution. It will help to define the indicator function of E
to be

E_ 1 if F is true
X 0 if F is false

where E is a logical statement. The a-core is then given by

11



Definition 1 (a-core) Define the a-core of ug to be up, where T C S is chosen to be
mazximum such that

Yw € span(ur) such that w # 0, Z X{wa7é0}/J,($) > o
zepT

We now establish some characteristics of the a-core, including that the a-core is well-defined.

Lemma 4 (Characterization of a-core)

(i) For any ur,
YVw € span(ur) such that w # 0, Z X{wT”éO}u(x) >« (a)
TEUT
if and only if

Vw, wlz#0 for somex € pp = Z X{wT”éO},u(a:) >« (b)
TEUT

(it) Q@ C S = a-core(pg) C a-core(js)

(iii) Q@ C S = a-core(pg) = a-core(ug N a-core(us))

(iv) Suppose that ur = a-core(us), and that dim(span(ug)) = k, dim(span(ur)) = k.
Then w(S\T) < (k — k)«

Proof: We first establish (i). Let pur be arbitrary. Assume (b) does not hold, i.e., there

exists x € pr and a direction w such that w’z # 0 and 5 w20} () < . Writing

TEUT

w=wi +wy, wi€ span(ur), wy L span(ur)

we find wl'z = wlz # 0, while > ey X{w/TWEO},u(x) => X 7#0} ) (z) < . Since

wy € span(ur), (a) does not hold.

TEUT

Now suppose that (b) does hold. If w € span(ur), then w'z # 0 for some z € pz, and

hence (b) implies that >° x{@"e#0} (1) > o, so (a) holds too.

To show (ii), we give an algorithm for constructing a-core(ug):

1. If there exists = € pg and a direction w such that w”z # 0 but > weus =0} (1) <
«, remove x from pug.

2. Repeat until there does not exists such an x.

To argue the correctness of this algorithm, it suffices to show that if x meets the cri-
terion of step 1, then z cannot be in any up, R C S such that Vw,w'z # 0 —
> reun 1 770} (2) < . But this is obvious, since the w associated with z in step 1

satisfies wlz # 0 and yet Y weun X e A0 () < > vens x50} (z) < a. Therefore
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any x identified in step 1 cannot be in a-core(ug). Since the algorithm stops when it has
arrived at pp satisfying (b), and no point has been removed that could be in a-core(us),
pur = a-core(pug). This establishes that the a-core is well-defined.

Now consider the order in which points are identified in step 1 when the algorithm is applied
to us. Considering points in the same order (and omitting points that are in pg but not
in pg), the algorithm run on pg would always remove the points as well, simply because

eruQ, w220} () < Zzeusz w270}y (2), where @ and §' are Q and S minus the
points that the algorithm has removed prior to the iteration under consideration.

We prove (iii) using (ii).

a-core(pug) C  a-core(ps) =

po Na-core(pg) C  pg N a-core(fs) =
a-core(ug Na-core(ng)) C  a-core(ug N a-core(fs))

We note that a-core(ug N a-core(pg)) = a-core(ug). Now

o Na-core(us) C  pg =
a-core(pug Na-core(us)) C  a-core(ug)

Combining these yields a-core(q) = a-core(ug N a-core(ug)).

To see (iv), construct pp from pg in the following greedy manner. If dim(span(ur)) <
dim(span(ps)), then

Jw € span(ug)  such that Z X{“’Tx7é0}u(:):) <«
TEUS

If w were not L to span(ur), we could write
w=w +wy, wiLspan(pr), wa € span(ur)

and then argue 3, o, X1 0 u(z) > Y X () = Y0, x 12  u(z) > o
Hence w L span(pr). Remove every point & € pg such that w'z # 0 (a less than o
fraction of the total probability mass), and note that this causes dim(span(us)) to drop by
at least 1. Therefore this construction can be iterated at most (k — k') times, and hence
w(S\T) < (k—FK)a. [ ]

We can now define the potential ¢ of a distribution (or a subset of a distribution).

Definition 2 (Potential Function: ¢) Let ur be the a-core of us. Let ¢p(ug) be
Vol(W(Mr)), the volume of the dual ellipsoid of pp. If pr is not full dimensional, but
instead lies in a space of dimension k, let ¢(ug) be Vol(W (Mr)), the k-dimensional volume
(within the span of ur) of the dual ellipsoid of .

We now prove upper and lower bounds on ¢(us), analogous to lemma 2, for the case that the
a-core of ug is full-dimensional. Although a tighter version of this lemma may be possible,
the analysis here is sufficient to show the asymptotic result of theorem 1.

13



Lemma 5 (Bounds on ¢) Denote the a-core of ug by pur and suppose that pr is full-
dimensional (and hence ur = us). Then

d(ps) > (2°v/n)~"f(n)
d(ps) < (n/a)" f(n)

Proof: We lower bound ¢ by showing that for any vector v satisfying |v| < %, v is in the

dual ellipsoid. Using that no element z of y has length greater than /n2?, we find that

v Mgy = Z (zTv)2p(z) < Z z20?pu(z) < 1

TEUS TEUS

The claimed lower bound now follows from the fact that W (Mg) contains a ball of radius
2717

v

To upper bound ¢(us), we will use that pp is full-dimensional. Because the volume of an
ellipse is equal to the product of the axis lengths times a factor that depends only on the
dimension, we have that ¢(ug) = f(n)/Det(Mg) where Mg = >_ rx’ pu(x). We now
show that we can decompose Mg into a set of simpler components plus some extra points,

Mg = NM;+> yy”
i Y

where each M; is a positive definite nxn matrix of integers and Y \; > a/n, A\; > 0.

To see this decomposition, begin by picking any point 1 € ug. Now pick any point x5 € ug
such that z2 ¢ span(z1). Now pick any point z3 ¢ span(xi,z2). Continuing, we can always
make such a choice by considering any direction w perpendicular to the span of the previous
points — any point with non-zero inner product with this w, guaranteed to exist by the
definition of a-core, lies off the span of the previous points. This first set of points {; };;:1
yields My = arja;? with Ay = min; pu(x;). To form Ms, we must restrict ourselves to
picking points from {ug\ A1 M} (using slight overloading of notation). By the definition of
a-core, as long as Y \; < a/n, we will always be able to form a new M; because we have
subtracted off less than an « fraction of the probability mass from the distribution thus
far. The process can be seen to terminate in a finite number of steps because the support
of pg is initially a finite number of points, and at every step the cardinality of the support
decreases by at least one. The {y} which we referred to as “extra points” above are simply
the points remaining in pug when this operation, having formed a sufficient number of M;,
comes to an end.

Note that each matrix M; satisifies Det(M;) > 1 because it is the sum of the products of
many integer terms and it is positive (because M; is positive definite). We now show that we
may ignore the y terms in establishing a lower bound for Det(Mg). Another consequence of
M; being positive definite is that M; = AiA;fr for some A;. Since the determinant of Mg is
the product of the eigenvalues, and each eigenvalue e; is equal to ) _, )\i(A;waj)2—l—Zy(yij)2
for some unit vector w;, Det(3"; NiA;AT) < Det (>, NA AT + 3 yy?).
We have from fact 2 in section 10 (and since the geometric mean is at least the min) that
for )"\ =1,
Det() " XM;) > min{Det(M;)}
- i
1

14



The last step is to write Det({M) = " Det(M), which implies Det(Mg) > (a/n)™. This
yields the claimed upper bound on ¢(ug). [ |

Note that lemma 5 implies that the log of the ratios between the upper and lower bounds on
¢ is at most n(b+ 1.5(log Z)). (The relevant setting of a for the proof of theorem 1 will be
a = €¢/(3n).) This compares favorably with the corresponding ratio in the continuous case,
nln %, and suggests that we have not introduced much slack while extending our techniques
to amortize over the singular values.

We now address the issue of dimension dropping. We refer to non-monotone growth in
the title of lemma 6 because now ¢ may drop when we remove some of the distribution.
To see this, consider example 1 again: ¢ is initially about f(n), but after removing the
point p, ¢ becomes roughly 27%"=1Y f(n). In the proof of theorem 2, we bounded the
drop in probability mass by bounding the increase in the volume of the dual ellipsoid.
Because ¢ may decrease greatly during the course of the algorithm (when the a-core drops
in dimension), a bound on ¢’s final value is no longer enough to bound the drop in probability
mass. Happily, we can still bound the growth of ¢ in the following sense:

Lemma 6 (Non-Monotone Growth of ¢) Over the course of either algorithm on dis-
tribution u, let (A@); denote the relative increase in ¢ while a-core(u) spans a subspace of
dimension i (or 1 if a-core(p) is never concentrated on a subspace of dimension i). Then

H(A(b)z < 2n(b+310g ~+1)

)

Proof: Suppose that initially the a-core of y is full-dimensional, and that [[,(A¢); = V.
Under a simplifying assumption, we construct a distribution p’ such that the a-core of y is
full-dimensional and ¢(u')/¢(p) > V. (If the result of applying the oulier removal algorithm
to p is pg that has full-dimensional a-core, then p/ = pug and there is nothing to do.) By
lemma 5, ¢(1/) and ¢(u) cannot differ by a factor of more than 2"(*+1-°18 %) "and thus this
suffices to prove the bound on V. We then remove the simplifying assumption. We defer
the issue that the a-core of p might not initially be full-dimensional to the very end of the
proof.

Suppose that the algorithm goes from pp of dimension (i + 1) to ug of dimension 4, and
then runs for a while to produce g (still of dimension 7). The simplifying assumption we
mentioned above is that the dimension of the a-core has only fallen by 1 on this step. For
ease of exposition, assume that each distribution is equal to its a-core. This is without
loss of generality because ¢ is defined in terms of the a-core, and so the points outside the

a-core are irrelevant for this lemma. We will construct 'y, and p/,, of dimension (i + 1)

¢ ! !/ ¢ ! ! .
such that ¢(u's) > ¢(ur) and ¢((’; 77:)) = ;{:LZ )). Then we will have

P(pr)
P(ps)

Applying this construction iteratively over all the dimensions yields p/ of dimension n
satisfying ¢(u')/d(u) > V.

d(urr) = d(s) > (Ap)igd(ur)

15



Let us now construct g, and pr. Define p; = pu(x;) for all 7 € pp\g and let P =3, p;.
Then

D
Mp = Mg + § pjaja] = § ?g(MS + Pzjz))
7 7

Define X to be (Mg + ijac;‘-F). By fact 2 (section 10),

Det() X X;) > min{Det(X;)}, > Xj=1
there exists j such that Det(X;) < Det(Mpg). Denote this particular z; by z, and let
pe = {ps + = with weight o’}

wrr = {pr + = with weight o}
Note that P > «, and so Det(Mg,) < Det(X;). Thus ¢(us) > ¢(ur).

We now show i((l;TT’)) = Z((ii')). Rotate the distributions so that span(ug) and span(ur) are

equal to the first 7 coordinate axes, and z lies in the span of the first ¢ + 1 coordinate axes.
Denote the vector formed from the first i coordinates of = by x[1...4], and the (i + 1)
coordinate of x by x[i + 1]. Then the distance of  to span(ug) is just z[i + 1], and this is
also the distance of  to span(ur). We have ¢(ur) = f(i)/Det(Mr), while

oty = st 1yper (|50 o+ [Tl )

where the upper left matrix block (Mp + o?z[l...i]z[1...i]T) is ixi. For any matrix A,
subtracting a scalar multiple of some row of A from another row of A does not change the
determinant of A. To calculate ¢(u/ ), we subtract z[l]/z[i 4+ 1] times the last row of the
matrix from the [** row for every [ < i. This yields

Det ([Z%T 8] +o Lc[i + 1]93[1 AT i i 1]2D = Det(Mr)a’ali +1]°

Therefore d(;((l;?’)) = (axli +1])72 ! Sf;g)l). An identical calculation yields an identical result
d(p's) . () _ d(p's)
for ¢(#SS). This shows that ¢(#TT) = ¢(NSS).

We now remove the simplifying assumption and extend this construction to the case that at
some step the a-core falls in dimension by more than 1. If ur and pg differ by k& dimensions,
we construct g, by adjoining k£ points from pRr\s, each with weight a/k. We now show
how to find these points. Since up is an a-core, and span(ug) is a subspace of k dimensions
less, we can use the construction of lemma 5 to write

«
MR:MS+zi:/\iAiA;+Zny7 zi:)\iZAZk

where each A; is a set of k points such that span({us + Ai}) = span(ur). As above,

«

A;AT
A )}

Det(Mg) > Det(Ms+ Y _ MiAiA]) > min{Det(Mg+AA;A])} > min{Det(Ms +

()
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Let A denote the A; realizing this minimum and let

Wer = {pus + A with weight %}

wrr = {pr + A with weight %}

We have ¢(u'y) > ¢(ur) by construction. It remains to show (i((l;?)) = Z((ii’)). We do this by

by showing that the previous calculation (giving this fact under the simplifying assumption)

can be repeated k times. Let p/ g,) denote {us + first [ points of A with weight ¥} and

define p/ 59 similarly. Then the previous calculation yields

y)) _ o) or)) _ o) | o) _ o'y))
olur)  olus) T pwl))  e(wG) o(Wr) W)

This concludes the construction of x' which is full-dimensional and at least an a/n-core.

We now turn to the case that y is initially only & dimensional, where & < n. In this case,
we adjoin any (n — k) points, each with weight «, to form f, where fi is full-dimensional.
Then i1 may not be a probability distribution, but it has total weight at most 1 4+ na, and
SO

¢(i) > (2°vnV1+na)™" f(n)

by the same construction as in the lower bound of lemma 5. The iterative construction
above (without the simplifying assumption) yields i’ such that ¢(i') < (n?/a)"f(n), and
SO

2
o(i1')/$(f1) < (%2Wm)” < (2032 /o)™ < on(b+3log 5+1)

This concludes the proof of the lemma. |

We now prove that Algorithm 2 applied to a distribution p over the b-bit integers yields S
satifying theorem 1.

Proof of Theorem 1: Let a = ¢/(3n) and let 8 = 4% = 62(b+ 4log 2 + 3). The only
time that the drop in probability mass due to action by the algorithm does not lead to an
increase in ¢ is when either the algorithm causes the dimension of the a-core to drop, or
the algorithm removes probability mass that lies outside the a-core.

We first consider the fraction of the distribution that is not part of the a-core. Initially,
dim(span(p)) is at most n. Suppose dim(span(a-core(p))) = k. Then by lemma 4:(iv), at
most an a(n — k) fraction of u lies outside of the a-core of u. Points only leave the a-core
when they are removed by the algorithm, or when the algorithm takes pg to pg in one step
and

dim(a-core(ug)) = k1, dim(a-core(ug’)) = ko, ko < k1

In the latter case, the probability mass lost from the a-core (and not removed by the
algorithm) is given by
{ns Na-core(ug)} \ {a-core(ps)}

Since S’ C S, by lemma 4:(iii), this is the same as

{ps' Na-core(us)} \ {a-core(ps N a-core(ps))}
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and by lemma 4:(iv) this is no more than a(k; —k2). Since the cumulative drop in dimension
of the a-core is no more than n dimensions, no more than an an fraction of the distribution
ever leaves the a-core (without being removed by the algorithm) over the course of the
algorithm.

We now bound the amount of the distribution removed by the algorithm on steps in which
the a-core drops in dimension. In the proof of theorem 2, we showed that in any single
step, Algorithm 2 throws out no more than a 1/ fraction of the distribution. Since there
are no more than n steps where the a-core drops in dimension, we throw out no more than
an n/+? fraction in this way. This yields that at most an na + n/v? < 2¢/3 fraction of the
probability mass that we throw away does not contribute to increasing ¢.

We now proceed exactly as we did in the proof of theorem 2 for Algorithm 2. Every time
we remove p; of the probability mass from the a-core and the a-core does not drop in
dimension, we have from lemma 1 that ¢ must increase by eP*/2 If we throw out an €
fraction of p, at most a 2¢/3 fraction does not contribute to ¢ increasing, so by application
of lemma 1

Lemma 6 then yields
on(b+dlog 2+43) - R

2
2
= nb+4logZ +3) > L (€ - 55
€ 2 3
3 2
:122(6’—56):6@6
This concludes the proof of theorem 1 using Algorithm 2. |

We now prove theorem 1 using Algorithm 1. As we noted previously, this may be obtained
as a corollary of the success of Algorithm 2, but a direct proof raises an additional issue
that we explore below. The resolution of this issue leads to a bound on § with smaller
leading constant.

Proof of Theorem 1: Let a = ¢/(3n) and let § = 7% = 32(b+ 4log 2 + 3). The only
new issue is bounding the amount of probability mass removed by the algorithm on steps in
which the a-core drops in dimension. We might remove up to an n/v? fraction in a single
step, but our asymptotic bound would not stand up if we could remove up to an n?/~?
fraction of the probability mass over the course of the algorithm.

Suppose the a-core falls by k dimensions in one step of the algorithm. Rather than con-
sidering all the points outside S = {x : |z| < ~ after rounding} as being removed at once,
imagine instead that the probability mass on every point is uniformly decreased. Then, ¢
increases continuously except for at most k discrete time steps, when the dimension of the
a-core drops. Apart from the steps on which the a-core drops, ¢ increases as a function
of the probability mass removed exactly as implied by lemma 3. Every time the a-core
drops by ¢ dimensions, at most an ia amount of probability mass leaves the a-core (by
lemma 4:(iv)). Therefore at most a ko amount of probability mass is removed without an
increase in ¢. In this thought experiment, no probability mass in the a-core is removed by
the algorithm without an increase in ¢. Thus at most an na = €/3 amount of probability
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mass is removed without an increase in ¢. We apply lemma 3 and lemma 6 as before to
obtain

- gn(b+4log T+3) ~ e%(e’—%)

=>n(b+4logﬁ+3) > (e'—E)
€

3
:>12Z(6’—§):>6’<6

This concludes the proof of theorem 1 using Algorithm 1. |

5 Time and Sample Complexity

In this section we describe polynomial time versions of both algorithms. The computational
model is to allow multiplications and additions in unit time.

5.1 Point sets

Suppose the distribution pu is specified explicitly as a set of m points with weights corre-
sponding to probabilities. Then we can achieve exactly the stated value of 8 with either
algorithm deterministically. The running time for either algorithm is given by the time to
compute M (O(mn?)), the time to round the distribution (O(n® + mn?)), the time to find
an outlier (O(mn)), and the need to repeat the whole process up to m times. This yields a
time bound of O(m?n? + mn?).

In the above discussion we made the worst case assumption that only one data point was
thrown out in each iteration of rounding and looking for outliers. In the case that a single
data point is throw out, rounding the distribution can be done more efficiently. If the
distribution is initially isotropic, and v of probability p is removed, then M’ = I — pvv”
gives the new inertial ellipsoid. We can factor M’ -1 symbolically as

2
_ 1 T
M =BBT=(1-{1- -
V1—vTop ) viv

where we have chosen B to be symmetric. To verify this calculation, note that

BM'BT = (I — bov™)(I — pvoT)(I — bwoT) = [I — (2b — b*0?)vuT ][I — puoT]

where b = 1%2 <1 — 1 ) and we have used that the matrices commute. We calculate

v/ 1—v2p

1
20 — b*? = —

(2 ) = (1= s + =)
v? V1 — po2 T—po2  1—po?
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1 1 1 D
T2 1—pv2)  1—po?

Plugging this in completes the verification

1 — (2b — b2y ][I — puoT] = [T + %@M] I — pooT]
= [+ ( - v’ )va] =7

1 — pv? P 1 — pv?
If the old distribution was {z}, the new isotropic distribution is { Bz}, where our formula
for B yields

T
Breo_[1_ 1 v(v' x)
V1I=vTep) vl

which is computable in time O(n) for any point . Another explanation for this formula is
that we are just correcting the inertial ellipsoid in the direction of v; this type of update
step is sometimes referred to as a rank-1 update. Using this observation, we can compute
M from scratch once (O(mn?)), round the distribution from scratch once (O(n® + mn?)),
and then find an outlier (O(mn)) and reround using our formula above (O(mn)) a total of
at most m times. This yields the improved time bound of O(m?n +mn? + n3). If we throw
away less than an e fraction of the point set, the time bound is just O(em?n + mn? + n3).

If we specialize our analysis to Z;' and the case that the distribution has full-dimensional
a-core throughout the algorithm, we can obtain a running time with a different dependance
on the relevant parameters. Suppose that on some step of Algorithm 1 with parameter 3
we remove all S-outliers and ¢ (equivalently, the dual ellipsoid volume) increases by a factor
of no more than (1 4+ J) — then the remaining data set is (1 + J)B-outlier free. Because
we may have removed many points, we cannot use the technique just developed above, and
our time bound is O(mn? +n?) per iteration. However, by our upper and lower bounds on
¢, there are at most log ;) 20(nb) — O(%b) iterations where ¢ increases by (14 §) or more.

The final bound on the running time is then O( M) to obtain a (1 + 0)F-outlier free
set.

5.2 Arbitrary distributions

Now suppose that we are not given u explicitly, but rather only the ability to sample from
. For ease of exposition, we will refer only to the case that the support of u is in Z;'. The
outlier-free restriction of p will be specified as the part of p contained in an ellipsoid. The
algorithm for distributions is:

1. Get aset P ={z1,...,%m} of m samples from p.
2. Run the outlier removal algorithm on the discrete point set P with parameter I'2.

3. Let P’ be the outlier-free subset of P. Then the outlier-free restriction of P is given
by TE(M'), where M' = % Y eicp z;zl. The outlier-free restriction of u is given by
(1+6)TE(M’), where § € (0,1/4) is an accuracy parameter.

The main theorem of this section is the following.
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Theorem 3 (Sample Complexity) Let

2 2
v n n(b+ logn) [ ny
m = O<52 <nlog5+log6 =0 >z

Then with high probability, either outlier removal algorithm run with parameter I'? = (1 +
8)29? returns an ellipsoid T = T E(M') satisfying

(1)) wW((14+0)T)>1—¢

(i) (1 + 8T has no (1 + 6)°Wr2-outliers

where (72, €) is achieved by the deterministic omniscient algorithm (ommiscient in that it
knows the distribution exactly).

For the remainder of this section, assume that the deterministic omniscient algorithm with
parameter 72 finds a subset S such that u(S) > 1 — ¢, and pug has no y?-outliers. The
statement “u5 has no y2-outliers”, or simply “S has no y2-outliers” (since u is implicit), is
exactly that

Vw, max{(w'z)?:ze S} <A?E[(wlz)?:2e€S|Prjze S| = ZZwaﬁ
x€S

The max is not over x € ug, but rather x € S. This is an important subtlety. Since S and
T constructed by the algorithm are always convex, whenever we have Vw, max{(w’z)? :
r € S} < max{(wlz)?: x € T}, we will be able to conclude that S C T. If we had instead
defined the max over = € ug, we would only be able to conclude that p(S\7) = 0 (i.e.,
although S might not be a subset of T', 1 does not assign positive probability to any point
in S that lies outside of T'); this alternative definition would have increased the length of
the proof.

We know that 72 = O(b?”) is always achievable, but in some cases we may do better. Our

bound on running time is proved for arbitrary values of 2.

Suppose that at some step we can estimate E(M) to within 1 £ ¢ in every direction. Let
I'? = (1 + 6)?4%. Then every point that we perceive to be a ['%-outlier will be at least a
y2-outlier with respect to the true distribution, and so removing them does not throw away
any point that the deterministic algorithm keeps. Similarly, if we perceive the distribution
to have no I'>-outliers, the true distribution will have no (1+6§)2I">-outliers. Before removing
outliers, we may not have that our working estimate of M, M, is within 146 of M. However,
whenever we are wrong by more than 1 + §, there is some true outlier with respect to the
original distribution that we throw out even using our flawed estimate M. This line of
reasoning (made rigorous) will allow us to find a (1 + §)°M~2outlier-free subset in space,
where 72 is achieved by the deterministic version of the algorithm. In lemma 7 we show
this for a particular direction in a particular iteration. In lemma 8 we extend this to all
iterations, and in the proof of theorem 3 we extend this to all directions and all iterations,
at every step bounding the sample complexity.

Lemma 7 (Outlier Detection, One Iteration) Fiz a direction w. Let S be a subset of
space. Let our number of samples be
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and consider the sample distances in direction w given by {w'xz;}. Let y denote the true
variance of S and y denote the sample variance,

y=> (whayp@) §=—73 (whe)

€S z; €S

Then with constant probability

Proof: Property (i) says that we do correctly estimate the variance of an outlier-free
restriction of the distribution, and property (ii) assures us that any outlier-free restriction
of the distribution has no probability mass past I'? times the sample variance (i.e., we can
always safely throw away probability mass using the sample variance). Both claims are for
a fixed direction w. Note that S is assumed to be «2-outlier-free in the hypotheses of both
(i) and (ii). Lemma 8 will not rely upon part (ii) explicitly, but it will involve a similar
argument.

Let X; be the random variable representing the squared distance of x; along the direction w,
X; = (wTx;)?, or 0 if x; ¢ S. Without loss of generality, assume max{(w’z)?: 2 € S} =1
(by an appropriate scaling). First we show (i). Since g has no y?-outliers, we have y > %
Applying the Chernoff bound to determine the probability that 7 is not a good estimate
for y, we have

Pr(lmg — my| > dmy] < e0mv/3

This occurs with constant probability for m = O(}—j).

Now we show (ii). Let T be as above, and again assume max{(w’z)?: x € S} = 1 without
loss of generality. If S has no y?-outliers, then y > 7—12, and we would have found ¥ to be an

accurate estimate by the analysis in the previous paragraph. In this case, (1 — )y < § =
y < (1 +6)%y, and S has no y2-outliers implies max{(w’z)? : z € S} < 4%y < I'’y. This
then implies S C T [ |

Lemma 8 (Outlier Detection, Many Iterations) Fiz w. Assume S is

full-dimensional. Let
2 2
7%, n(b+logn) = (7

Then with constant probability either outlier removal algorithm restricted to w with param-
eter I'? produces a subset of space

T={z:(wlz)? <t}

for some value t such that

(i) For any subset of space S that has no v?-outliers along w, S C T.
i) (14 8)T has no (1 + 6)3y2-outliers along w.

(i) ( gl g
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Proof: By “either outlier removal algorithm restricted to w”, we simply mean the one-
dimensional version of the two algorithms. Consider S achieved by the deterministic omni-
scient version of the algorithm (restricted to w). Since our outlier removal algorithm only
throws away probability mass when necessary, this S is the largest possible restriction that
is y2-outlier free. Define y and 7 as in lemma 7. By lemma 7 part (i), we have that 7
is a good approximation to y. This ensures that with good probability, we identify S as
I'2outlier-free, and so (i) is proved. It remains to show that, if our algorithm for some
reason chooses a substantially larger set T, then (1 + 6)T has no (1 + §)3y2-outliers.

Define T,, = {x : (w?x)? < a}. Suppose 3 such that T, has no I'>-outliers. Then T(1+46)a
has no (1 + §)?I'%-outliers. This follows from the fact that

max{(wlz)?: z € Ta+s)at < (14 6)? max{(wlz)?: z e T,}

and E[(wTz)? : x € T,] Pr[z € T, is a monotonically increasing function of «.

Suppose we estimate that some set 7' = T} has no I'>-outliers (in which case the algorithm
might return 7" as an answer). Then our sample also leads us to calculate that T, has no
(1+6)?I'2-outliers for « € [t, (1+ 6)t] by the same reasoning as in the preceding paragraph.
For every t, we will show that for some nearby (within a factor of (1 + §)) value of a,
we estimate the sample variance of the restriction of u to T, with sufficient accuracy. We
proceed to analyze what values of o we need to consider.

Assume without loss of generality that w is a unit vector. An easy upper bound on
max(w?z)? is 26 /n. To develop a lower bound, we will need to use the assumption that
S is full-dimensional. For any ug, we can write max(w’z)? > E[(w”z)?]. By decom-
posing jg in the manner of lemma 5, we can obtain the stronger statement max(w?z)? >
Eym, [(wTy;)?] where the probability distribution on the {y;} is uniform and the {y;} are

full-dimensional. The term E[(w”y;)?] is lower bounded by the smallest singular value of
the {y;}. We have previously shown that the product of the singular values of such a distri-
bution is at least n~2". Since no individual singular value is more than 20 /n, we have that
—2n gn(b+5logn) — 90(nb) - Therefore we can restrict our attention to
90(nb) _ O("(b+(15°g"))

the smallest is at least n
o = (140)* for k an integer and union bound over the at most log(144)
possible values for k.

We now show that if we estimate T}, to have no (148)2I"2-outliers, then with good probability
T, actually has no (1 + 6)°T'2-outliers with respect to the true distribution, and by our
reasoning above, since there is an a within (1+8) of ¢, T{11g) is (14 0)°I'? outlier-free.

We do this by showing that if T}, has a (1 + §)°T'2-outlier, then with good probability our
sample shows T, to have at least a (1 + §)2I'>-outlier. Let X; be the random variable
representing the squared distance of x; along the direction w, X; = (w”z;)?, or zero if
x; ¢ To. Without loss of generality, assume o = 1. Define y and 4 as in lemma 7 (but with
T, in place of S). Then by assumption on T, y = E[X;] < T 1)61“2 The condition that
our samples show 7T, to have at least a (1 + §)?I"%-outlier is j = L 3" X; < We

apply the Chernoff bound,

1
(1+6)2r2 -

Prj > (1+ A)y] < e/
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where we have stated the Chernoff bound for the case that A < 1. Let A = W —1
(this yields the event that y > W in our probability calculation). If A < 1, then
1 21 46 21 52
A? = - - > S — R .
Y <<1+5>2r2 y> y - <<1+6>6F2> y - T

and the probability we do not correctly identify the furthest outlier is at most e~ AMmy/3 —

O(1) for m = O(L;). If A > 1, then

Ayt 50
YT atome Ve

and the applicable alternate form of the Chernoff bound
Pr[y > (14 A)y] < e /3

yields that e=2™¥/3 = O(1) for the same setting of m.

Since there are only O(%) different values of « to consider,

m = O(I(;—Q2 log w) allows us to union bound over all the possible values of a. This
shows that with constant probability, if we estimate 7" to have no I'?-outliers (in which case
our algorithm might return T'), then (1 4 §)T has no (1 + §)®I'2-outliers. This implies (ii).

]

We extend the analysis of lemmas 7 and 8 from a fixed direction to all directions and argue
the correctness of the entire algorithm by proving theorem 3.

Proof of Theorem 3: Let S be the ellipsoid found by the deterministic algorithm (i.e. the
outlier-free subset of points lies in this ellipsoid). Assume initially that S is full-dimensional.
Rather than considering the original space, consider the transformed space where S is the
unit sphere.

Consider the many directions w given by a ¢§’-grid in the unit cube, §' = %. We form this
grid by choosing every w such that the coordinates of w lie in {0,4¢’,2’,...,1}. By our
choice of m, we can apply lemma 8 part (i) to each of these (%)™ directions simultaneously
and then union bound. Then with good probability, for every w in the §’-grid, max{(w’z)? :
€ T} > max{(w’z)?: 2z € S} (i.e., in this direction T contains S). We now show that for
an arbitrary direction w, (1 + )7 contains S.

Consider an arbitrary unit vector w. By rounding every coordinate of w up or down to an
integer multiple of 6’ we obtain a point on the §’-grid. The set of all possible such roundings
forms a box surrounding w, and some (not neccessarily unique) subset of n of these points,
which we denote {w;}, satisfy that w is in the convex cone of the {w;}. Since w is a unit
vector, each w; has length |w;| € (1 & 'y/n), and so w; = w;/|w;| is within 2§’y/n of w.
Define T'(y) to be the distance to the boundary of T" along the direction y. Since T is convex
and T'(w;) > 1, the quantity T'(w) is lower bounded by the minimum distance of points on
the convex hull of the {w;} to the origin. Since w is within 2§’y/n of each {w;}, so is the
projection of w to their convex hull. Since the point on the convex hull is at most 2§’\/n
away from w; for any i, T(w) > 1 —26'/n > 1 — §/3. Since S is within 1 of the origin
everywhere, (1 + §)T" contains S. This concludes the proof of (i).
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Now consider (ii). Since S C (1+ )T, T is full-dimensional as well. For every w in our §'-
grid, we have that (1+0)7T is (1+0)%'2-outlier-free along w by lemma 8 part (ii). As before,
consider the transformed space in which (1+0)7 is the unit sphere. Let R = E(Mr) be the
actual inertial ellipsoid of up. Let w be an arbitrary unit vector and define {w;} as before.
We have that R(w;) > W and we reason as above that R(w) > (11;;;{;;2 > (1+51)91“2'
Therefore (1 + )T is (1 + §)°T'2-outlier-free.

We now remove the assumption that .S is full-dimensional. Suppose S is not full-dimensional,
but rather spans a subspace (. It suffices to consider w € (. For such a w, the projection of
the associated {w;} to ¢ yields {w]} that are within ¢’\/n of the {w;} (because they don’t
move further than the distance to w upon projection). We can compare the {w}} and w just
as we did the {w;} and w previously. Because the max along w; is within a factor (1 —¢§/3)
of the max along w;, and the max along w; was lower bounded in lemma 8, the max along
wj is similarly lower bounded even though w; ¢ ¢ (the change in the lower bound on the
max is asymptotically negligible). Therefore we can apply lemma 8 part (i) to w;. Thus
T(w;) >1-46/3, and so T'(w) > 1 — ?. Thus (1 4 6)T contains S. This establishes part
(i)

We can extend the proof of part (ii) to the case that 7" is not full-dimensional in an identical
manner. This concludes the proof of theorem 3. |

Corollary 1 (Running Time) The algorithm runs in time O(b:gf

).

Proof: We have from section 3 that 3 = 42 is at most O(bn /€), and so we never need more
than m = O(%‘—;) samples. Plugging in this value for m to our bounds from section 5.1
yields that the algorithm runs in time O(%ﬁ), which is the bound we referred to in the

introduction. In this time we achieve a (1+ )M = 14 O(8) approximation to the optimal
value of 3. |

We now pose a related problem: Suppose that we are not given the parameter v2, but
rather only €, and asked to find the appropriate ¥2. Lemma 9 will show that we can at
any point determine within a factor of (1 4+ ) how much of the probability mass is within

. . = ~ log( %)
a fixed ellipsoid. Since 42 € [1,0(%2)], there are at most log(144) O(2) = O(=25=2) values
of 42 to consider (with a loss of at most a factor of (1 + §) in the value we find for 72).
Therefore we can simply try them all, estimating for each one whether this 2 requires us

to throw away more than a (1 + §)e fraction of the distribution.

Thus, if the parameters (72, ¢) are achievable for the deterministic algorithm, and we are
only given €, we can find a subset of space T satisfying parameters ((14+0(68))72, (14+0(5))e).

Our asymptotic running time is still O(b:gf ).

Lemma 9 (Probability Mass Location) Let E be an ellipsoid. Let our number of sam-
ples {x;}1" | bem = 0(65%) Then with constant probability, if we estimate a (1+6)e fraction
of our samples to be outside of E, at most a (1 + §)%¢ fraction is outside of E, and at least
an € fraction is outside of E.
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Proof: Round E. Let Y; be a random variable, Y; = 1 iff :1:12 > 1. Let y = % >Y; and
y = E[y;]. The event that we estimate a (1 + 0)e fraction of the sample to be outside E
when less than an e fraction truly lies outside E, is y < €, § > (1 + d)e. We can upper
bound the probability of this event using the Chernoff bound

PT[ZYi >m(l+ A)E[Y;]] < o—AmE[y]/3
where A = (1+7y5)6 ~ 1. Then

(1—0—5)6_1

(1—1—5)6_1
Yy €

Ay = ( (L +0)e—y) = ( )((1+0)e —€) = d%

and so the upper bound on the probability is constant for m = 0(65%). If A > 1, in which
case the alternate form of the Chernoff bound is applicable, we find Ay > de, and so the
number of samples is still sufficient.

A similar calculation for the event that y > (14 )%, 4 < (1 + §)e using
Pr[} Y < m(1 - A)E[Y]]] < e 2B

involves setting A =1 — %, which yields
(I4+9)e

) > 6%
Y

A’y =(y—(1+38)e)(1 - >
and similarly for the alternate form of the Chernoff bound if A > 1. Therefore the proba-
bility of significantly underestimating the amount of probability mass outside E is at most

a constant for the same value of m. [ |

One consequence of the theorems in this section is that a sample of size O("%b) is enough
to estimate the inertial ellipsoid of any distribution on Z;' (after removing at most an e
fraction) and thus bring it into nearly isotropic position.

6 A Matching Lower Bound

We show that for any e < 1/4 there exists a distribution p with support C Z;' such that,
for any S satisfying u(S) > 1 — ¢, there exists w such that

max{(w?z)?: z € S} > FE[(w’x)? : 2 € S]Pr[z € §] > SE[(w'z)?: z € 5]

[T

where 3 = Q(2(b— log %)) Based on the comparison between our upper and lower bounds
on J in the case that we can’t throw out more than half the distribution

O(%(b—klog%)) vs. Q(Z(b—10g1)>

we describe theorem 1 as asymptotically optimal.
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Figure 2: Lower Bound Constructions

We motivate the construction of the worst case distribution by constructing three simpler
distributions, each of which proves a weaker lower bound. The strong lower bound will
follow from examining a distribution that is a composite of the three distributions showing
the weaker lower bounds.

To prove the first weak lower bound, let u be the uniform distribution on the one-dimensional
points {2°,21,...2°}. An illustration of this p is given in figure 2, part A. We claim that
for any € < %, the best achievable (i.e. smallest) 3 satisfies # = Q(b). The proof is simple:
suppose the largest data point we keep is 2¥. Then (ignoring the factor w since we are in
one dimension), max{z? : z € S} = 2% while E[2? : v € 9] < % = O(%). Since
B= mﬁf}'}, we find 8 = Q(b).

To prove the next weak lower bound, we construct a distribution as in figure 2, part B. Let u
be the probability distribution on one-dimensional points given by p(1) = 1—2e, ,u(ﬁ) = 2e.
1

Then for € < 7, neither point can be thrown away. Thus max{z? : ¥ € S} = %, while
E[2? : z € 5] = 3 — 2, yielding 8 = Q(1).

For the third weak lower bound, we let u be a distribution on n-dimensional space. In
particular, let ;4 be the uniform distribution on n points, one on each coordinate axis, each
one at unit distance from the origin, as illustrated in figure 2, part C. For € < %, we do
not throw away any points on at least n/2 of the axes. Then for w a unit vector along
one of the axes where the point is not thrown away, we have max{(w’z)? : z € S} = 1,
E[(wTz)?: 2 € 5] < 2, and thus 8 = Q(n).

The composite construction that we use to prove our strong lower bound in illustrated in
figure 2, part D. We obtain the composite distribution by taking the distribution of part A,
and making two copies that are weighted and translated as the two points are that compose
the distribution of part B. We then place a copy of this new one-dimensional distribution
along each axis, as in the distribution of part C. We now restate this construction formally
and proceed to analyze it.
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Fix n, e and b/ = % — %log % Let u be a copy of the following distribution along each axis.

Let there be 20’ points at distances
Vool 41 2 —1
) \/E? \/g AR \/E
and consider the distribution that places a (1—2¢) fraction of the probability mass uniformly
on the first &’ points and a 2¢ fraction uniformly on the remaining b’ points. This distribution

20 9L .. 2

satisifes that the maximum bit length along an axis is log % =b.

There are many ways of choosing a subset S of this distribution, but we can quickly restrict
the set of interesting choices to ones that treat each axis symmetrically. For the purpose of
establishing a contradiction, suppose that it helped to treat the different axes differently.
We begin by noting that for a distribution concentrated on the axes and fixed .S, the vector
w that maximizes
max{(w'z)?:2 € S}
E[(wTz)?: 2z € S]Pr[z € 5]

always occurs on an axis — to see this, note that the rounding transformation need only
scale the axes, the maximizing w after rounding is in the direction of some point (i.e., along
an axis), and therefore the maximizing w before rounding is also along an axis. Let pu; be
a distribution concentrated on the axes and symmetric on each axis on which it is possible
to throw out an € fraction of the distribution and achieve parameter 3. Further suppose
that this e is the minimum such that this 3 is achievable, and the only S achieving 3 is
asymmetric. Let axis ¢ be an axis that a maximum outlier occurs on, and suppose that
along axis ¢ we throw out an ¢; fraction of the total distribution. If

€ <e€/n

then let S’ be the subset of 1 where we throw out the same points along every axis that
we threw out along axis 7 in S. Then we have € = ne; < €, and yet S” achieves (3 along each
axis, contradicting the assumption that there was no symmetric subset we could throw out

achieving the same (¢, ). If
€ >¢€/n

then there is some other axis j such that along axis j we throw out an €; < ¢; fraction of
the probability distribution, but achieving Bj < B along that axis (i.e. max{z;:x € S} <
BJE[:L'jQ :x € S]Pr[x € S]). Constructing S” by taking S and replacing our choice of points
to throw out along axis ¢ with the points thrown out along axis j then yields a contradiction
because €’ < e. Thus we can restrict our attention to S symmetric.

For any direction w along an axis, the projection onto w of any point on the other n — 1
axes is 0, so we obtain

1
E[(w’2)?} = ~E[z?, 1 one-dimensional]
n

We ignore the factor of n for the rest of the proof and restrict our attention to a single
coordinate axis. Suppose the furthest point kept by S achieving parameters (e, 3) is the
point with exponent k. By our choice of distribution, we cannot have thrown out more than

half the points with a ﬁ factor, and so we have max{z?: z € S} = 22 k> Calculating

€ )
the expectation

1—2¢
2

2e¢ 1 ’ ’
276,2(2217 +22b+2++22k’>

E[z?:z ¢ S]Pr[z € 8] < (204922 4. 4222y 4
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226’—1 22k+1 22k+2

<
- * A
yields that 3 = ma};g] ET??SH Pr[] > Z—;(l —€) > g—; for the one-dimensional case. Thus
our lower bound in the n-dimensional case is
- n 1
> (h—log =
f2 g (0—log )

7 An Approximation Algorithm

We showed earlier in the paper that for any distribution p, and any ¢ we can achieve
B=0(%(b+log%)). A question that naturally arises is how well we can do on a particular
distribution compared to the best possible on that particular distribution. Formally, given
w and €, we seek S minimizing 3 subject to the constraints that

() n($) =1
(ii) Yw, max{(w?z)? : x € S} < BE[(wTz)? : x € 5]

This is really a bicriteria approximation problem with parameters (3, ¢). Note that in this
case, we are looking for the normalized probability distribution to be g-outlier free. We
show this problem to be NP-hard even for one-dimensional data by a reduction from the
subset-sum problem. We then exhibit a (lie, 1)-approximation algorithm for this task in
the case that we are given the distribution explicitly. If we can only sample from the
distribution p, our algorithm yields a ( i + 6,1+ d)-approximation for any constant 6 > 0

with high probability.

The subset-sum problem is: given p; € (0,1),7 € {1,...n}, find I maximizing ), ; p; subject
to the constraint that ), ;p; < 1. To form a corresponding instance (u,€) of the outlier
removal problem, let P =} . p;, e = 55 P, and let v be given by

1

e a point at 1 with probability mass 5

e Vi, a point at 0 with probability mass p; = 25

Let S be a possible solution to this instance of the outlier removal problem. Since P >
1 (otherwise the subset-sum problem is trivial), the point at 1 cannot be removed, and
hence max,cs = 1. If we remove probability mass € of the points at 0, E[z? : z € S] =
M3+ (5-¢) _

1—¢ - 2— 26
is exactly the problem of finding the optimal solution I to the subset-sum problem.

Thus the ratio mﬁ’{%] = 2 —2¢, and minimizing this subject to ¢ < ¢

We now prove a lemma that enables the approximation result.

Lemma 10 (Preservation of Outliers) Let p be a distribution. Any [-outlier for p is
at least a B(1 — €)-outlier with respect to any subset S satisfying p(S) > 1 —e.

Proof: Let x be a S-outlier in the original distribution. Then for some w, (w’z)? >

ﬂE[(w 7)?] For any S, we have E[(wz)?: 2z € S]Pr[z € S] < E[(wTz)?] and so x satisfies
(w'z)? > B(1 - e)E[(w'z)* : 2w € 8] u
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The approximation algorithm is simply either algorithm described in section 5, with error
parameter § in the case that we are sampling from p. We could determine the optimal 3 for
a fixed € through a binary search. Suppose the value Bopr is achievable by the restriction of
u to some S satisfying p(S) > 1 —e. Anytime our algorithm sees a point that is a 3’-outlier
with respect to the unnormalized distribution, 3" > *B{D%ET, we know that this cannot be a
(< Bopr)-outlier under any restriction of x by lemma 10. So this point will have to be
thrown out by the optimal solution. Thus running our algorithm with g = /310%3 forces us
to throw away no points that the optimal solution does not also throw away. This yields
1

that we achieve a {—-approximation in the case of an explicitly provided distribution. As

before, the running time is O(m?n) for m > n.

The outlier removal algorithm in fact finds an approximation to 8 for every € in one pass.
The algorithms of section 2 can be used to define an outlier ordering of a point set, namely,
the first point that is an outlier, the second point, etc. Now to approximate the best possible
0 for a particular value of € we simply remove the initial € fraction of the points in the outlier
ordering one at a time, and then look back to see the lowest value of § achieved by any
€ <e

8 Standard Deviations from the Mean

We prove a variant of our theorem that shows we can find a large subset of the original
probability distribution where no point is too many standard deviations away from the
mean.

Corollary 2 (Standard Deviations from the Mean) Let pu be a probability distribu-
tion on ZJ'. Let S be a subset of space. Denote by ju(S) the probability that x chosen
according to ju is in S. Let # = E[z : x € S] and 02 = E[(w” (z — z))? : z € S]. Then for
every € > 0, there exists S and

B=0 (%(b—f—log%))

such that

(i) (S) > 1
(ii) max{w! (x — ) : x € S} < \/Boy, for all w € R"

Proof: The proof of the corollary is much like the proof of theorem 1. The appropriately
modified outlier removal algorithm for constructing S is simply to translate the data set so
that the origin coincides with the mean before each removal step. We can easily show that
translating p so that the origin coincides with the mean never decreases the volume of the
dual ellipsoid of u. We then explain how a variation on our potential function ¢, and the
upper and lower bounds on ¢, imply that the modified algorithm does not throw out more
than an e fraction of the data set.

To analyze the volume of the dual ellipsoid, consider a fixed direction w and let T% =
E[(w”x)?] (r is the length of the dual ellipsoid in this direction). If we translate the origin
to a value z along w, then have %2 = E[(w? (z — 2))?]. Single variable calculus shows that
the value maximizing r is z = E[w? x/|w|], which is just the mean. Thus translating our
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origin to Z maximizes the length of the dual ellipsoid in every direction simultaneously.
Thus the tradeoff between drop in probability mass and growth of the dual ellipsoid shown
in lemmas 1 and 3 also holds for the modified algorithm.

To describe our modified ¢, we need to define the a-affine-core of a distribution pg to be
wr where T' C S is chosen to be maximum subject to the requirement that the affine hull of
{pr minus an « fraction of pr} is not of lower dimension than the affine hull of ur for any
choice of the a fraction. Under this definition, an appropriately modified version of lemma 4
is still true. Define ¢'(ug) to be an appropriately modified ¢, ¢'(us) = Vol(W(Mr)) where
wr is the a-affine-core of pg. We now explain how to derive upper and lower bounds on ¢’
analogous to lemma 5 in the case that the a-affine-core of ug is full-dimensional.

The lower bound is immediately implied by the argument above that translating the origin
to the mean does not decrease the dual volume. To derive the upper bound, consider a set
A of n 4 1 points {a;} whose affine hull is full-dimensional. In lemma 5, we argued that
Det(AAT) was a positive integer, not zero by choice of A, and thus Det(AAT) > 1. Letting
a= n+1 S a;, we must lower bound Det(37 (a; — a@)(a; —a)T). Writing

n+1 n+1
(n+1)*"Det(d (a; —a)(a; —a)") = Det()_((n+1)a; — (n+ 1)a)((n+ a; — (n+ 1)a)")
i i
we have that the second term is the positive non-zero determinant of an integer matrix, and
hence the original determinant is at least W Because the origin corresponding to the
mean of a set of points maximizes the dual volume, this bound holds for all possibilities for
the origin. The upper bound on ¢’ is then (2)"(n + 1)*" f(n).

To prove a statement analogous to lemma 6 for the cumulative drop in ¢’, we revisit the
construction of yif, p's, from pp, ps, pr. Define these objects just as in the proof of lemma 6.
We have that Det(Mg,) < Det(Mg) when the origin i,S t,he mean of pig, and so ¢ (ply) >
@' (uR) to at least the same extent. We now calculate (Z,((MT’)) Letting the origin correspond
to the mean of pp, we have gZ)’(,uT) = f(i)/Det(Mr) where Mp = > vy’ u(y). The

mean of yi/, is given by T = ( 5 Then

Mg, = Z(y ~2)(y — ) uly) + o’z - 2)(z — 2)" =
yeT

Douyuly) =Y ay uly) =Y va uly) + 23 w(T) | + Pz - 2)(x - 2)" =

yeT yeT yeT

L pTPQR 4 u(T)e? g
BE R e B

Performing the same analysis using Gaussian elimination as we did previously and then
computing the ratio yields

¢ () _ fi+1) (u(T) + a)?
) )

>y uly) + 22" w(T) + oA (2 — 1)
yeT yeT

¢'(nr f@) (T (1 + p(T))ali +1]?
_ ) $ps) _ (T +a)*  p(S)a’(1+ p(S))
¢'(ur) ¢' () w(T)e*(1+u(T)  (u(S) +a)?
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We will now assume that we never remove more than an € fraction of the probability mass.
This is not circular reasoning — just as in the proof of theorem 2 using algorithm 2, the
upper bound on ¢’ under this assumption will imply that we never remove more than an
€/2 fraction of the probability mass, and since we never remove more than an €/2 fraction
on any one step, the assumption will always hold. Using this assumption, we calculate

(W(T) + )?
(u(S) + a)?

(1= |1 u($)a*(1+pu(s))

7 CT M1+ p(T) =

v

v

Multiplying these factors together over the at most n steps in the iterative construction
yields an additional cumulative factor of at most 227, which is negligible. Combining this
bit of additional slack with the new bound on ¢’ in the full dimensional case and the
possibility that we only have an (a/n)-affine-core (as at the end of the proof of lemma 6),
we finally arrive at a bound on the total cumulative drop in ¢’ of

2n(b+3 log ©:+3)
This immediately implies the claimed value for 8 in corollary 2. |

We now show that the i—approximation algorithm of section 7 naturally extends to a

L—c ) approximation algorithm in the setting where we measure outlierness with respect

1-3¢ )~
to the mean, rather than a fixed origin. To establish this, it suffices to prove the following
analogue of lemma 10.

Lemma 11 (Outlier Preservation Variant) Let u be a distribution. As in Corollary 2,
measure outlierness by squared distance from the mean rather than from a fized origin.
Suppose xqg is a B-outlier for u, and no other point is a [3'-outlier for 3' > (3. Then xq is
at least a ﬁlliie—outlier with respect to any subset S satisfying u(S) > 1 —e.

Proof: As in the proof of lemma 10, consider a unit vector w such that (wlzp)? >
BE[(wTx)?], and let 3 = 2. The difference between this bound and the bound of lemma 10
will result from the mean possibly moving closer to zy after removing other points {z;}.
Without loss of generality, let the mean of y be the origin, and let E[(w’z)?] = 1.

Suppose that to reach S we remove points {z;} of total probabilty mass ¢’ < e. Then

E[(w'z)?:2 € S]Prlx e S)=1- Z(waUi)2N($i)

%

= E[(wlz)?:z€ 8] =(1- Z(wai)QM(%’))/(l — )

We calculate the new mean as
E[(wTa;) cx € S)Prlx e S]=0-— Z(wT:rZ)u(xz)
= El(w"z) xS = (0= (wa)ulx:))/(1—¢)

%
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Therefore the new distance of g to the mean is (y — (0 — >, (w”z;)p(z;))/(1 — €)). We
calculate
NGO
2 distance? (’Y + i—¢ )

7T Variance (1—21'(1!1)%})2#(%)) :(

T,.. .
Let z = M, the average of the points. Then removing Z of weight ¢’ changes the
numerator by the same amount, and z2¢ < > (w”w;)?u(z;), so the denominator cannot
decrease. The derivation of 7%e < Y x?u(x;) follows from

(Z /\ixi)2 S Z)\Z.%'?, Z)\Z = 1, )\i Z 0

30+ 50)° < 50
along the same lines that fact 2 follows from fact 1 in sectlon 10. Now we have shown we
may consider removing only a single point Z of weight ¢’ in order to lower bound 7’2. We
may view this as a constrained maximization problem over Z, with constraints |z| < -, and
z2¢’ < 1. The expression for f(z) =~ is
2 _ (A—€)y+ )
(1 —€)(1—€x2)

which follows from
+ b2

If the constraint z2¢/ < 1 were tight, then the variance of the distribution after removing
would be 0, which would imply ' 2 — 1. If the constraint |Z| <~ were tight, we would have

e (A= —nd)?  ,(1-2¢) 1 5 (1-2\*_ ,(1-3¢
7 (1—¢)(1—n~2%) R 1_726,_7 1-¢) =7 \1-¢

If neither constraint is tight, we may solve the unconstrained optimization problem by

d@) _

setting 7= = 0 to find the local maximum, and then evaluating f(Z) at this maximum.
21 u(x)?
df(z) 1 (2u@/(z) w@)>' (@) _ 0 -
dz  1—e¢ v(T) v(z)? B
20(Z)u' (Z) — uw(@)'(2) =0 =
21— €z)() — (1 — )y +€x)(-27) =0 =
1-dZ)+ (1 -y +dB)z=0 =
1
1 T — N g r= ——
+vZ —€evyz=0 = =T (1= )y
1 2
£3) = A= —mam)” (-2 -e)
(s e e R () )
N2 €
72(1*6) BEL 1-3¢
(1—¢€) 1—¢
which proves the lemma. |
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9 A Robust Statistic

In robust statistics, the choice of the median as the quintessential robust statistic is com-
monly motivated by describing it as a “robust version of the mean.” In particular, it is
noted that for any data set, the mean of the data set can be changed by an arbitrary
amount simply by moving one of the data points to infinity. In contrast, the median does
not “go to absurdity,” as the literature commonly puts it, until at least half of the data has
been so changed by an adversary.

For a one-dimensional data set, define a d-median to be a point such that at least a §
fraction of the data lies to the left of the point and at least a § fraction to the right. In
n-dimensions, call a point a d-median if, for every direction w, it satisfies the definition of
the one-dimensional §-median under projection to w.

Using Helly’s theorem, one can prove that %H—medians exist for any n-dimensional data set
(or distribution), and this is best possible. Such a point is called a centerpoint. Centerpoints
were proposed by Donoho and Gasko[DG 92] as a robust estimator for high-dimensional
data. Donoho and Gasko showed centerpoints to have a high breakdown point, which is a
technical criterion of “robustness” that we shall not discuss further here.

Teng et al [CEMST 93] gave the first polynomial time algorithm for computing an approx-
imate center point (polynomial in n). Their algorithm produces Q(=;)-medians. We show

1
n
that the algorithm of section 8 produces -medians. For a distribution on Zj', this

1
N 29%(1—¢)
yields Q(-;)-medians.

Theorem 4 Let p be a distribution, let = = Elx : © € S|, and suppose S satisfies
(i) n(S) > 1— e
(i3) max{(w? (z — 7))?: 2 € S} < V?E[(w? (z — 7))? : x € 5] for allw € R"
Then Z is a m-median.
Proof: Suppose initially that ©(S) = 1. Without loss of generality, consider a particular
direction given by the unit vector w, and assume that w?z = 0 and E[(w”z)?] = 1. Since
we are restricting our attention to w for the rest of the proof, we may define y; = w”x;.
Let {y;} denote the distribution p on S, and let I denote the index set. We partition I and
define 5% via

I ={i:z; <0} It ={i:2z; >0}

0T = ) 6= plw)

iel— el t
Then we have
Yoomip(x) + D wip(r) =0 Y aip(e) =1
iel— ielt icl

Using that ? < «|x;|, we obtain

1= afplw) <Y Alwilule) = (O miplw) =Y wip(i) = (2D wiplas)) < 29767

il el icl+ icl~- iel+
From this we conlude that 6+ > #, and similary for 6~. Dropping the assumption that
w1(S) =1 turns our lower bound into 272(11—5)' [ ]

34



10 Some Properties of Matrices

The proof in section 4 relied on fact 2, which we speculate to be well-known. We present
the proof of this fact here since it uses techniques that are otherwise not necessary in the
rest of section 4.

Fact 1 For X,Y positive definite

Det((X +Y)/2) > \/Det(X)Det(Y)

Proof: This statement is equivalent to (clearing denominators and squaring twice)
Det(XY) < Det* (X +Y)/2)

which is equivalent to

Det?((X +Y)/2)
Det(XY)

= Det(%(X +Y))Det(X ) Det(X +Y)Det (Y1)

_ Det(%(X+Y)(X*1)(X+Y)(Y*1))
= Det(%([ +YX )XY+ )
- Det(i(YX_1+2I+XY_1))

1
= Det(7(A+20+ A7)

where we let A =Y X! at the very end. Also let B = A*%*A_l. We have reduced to the
case of showing that Det(B) > 1. We will show the stronger claim that every eigenvalue of
B is at least 1. Consider an arbitrary (eigenvector, eigenvalue)-pair of A, (e, \). Then

1

1

Since 1(A+2+ 1) > 1, we have that e is an eigenvector of eigenvalue at least 1 for B (this
used that A > 0, which is true since A is positive definite). Since the eigenvectors of A form
an orthonormal basis of the whole space, all of B’s eigenvectors are also eigenvectors of A.

]

Fact 2 For positive definite X; and Y N; =1, X\, >0,

Det(Y "N X;) > [ [ Det(Xi)™

Proof: This is a straightforward generalization of fact 1.
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Suppose first that for each i, X, is exactly equal to p;/ 2F for some integer p;. In this case,
we may apply fact 1 iteratively to find

Det(Y" x}) > [ Det(x})/2)

Equating p; of the {X} to X; for each i, we recover fact 2 exactly. For general {\}}, we
have that the theorem must hold for any k-bit binary approximation to the \}; fact 2 then

follows from standard continuity arguments. |
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11 An Implementation

Let X be an m X n matrix whose rows are the points of our distribution. Let m, n, beta,
epsilon be the values for m,n, 3, €, and let the boolean variable done indicate whether we
are finished removing outliers. A complete implementation is given by the following matlab
code:

%% requires X,m,epsilon,beta
done = 0
while (“done)
done = 1
M = cov(X) %% M is the covariance matrix of X
Y = X/cholinc(sparse(M),’inf’) %% Y is the isotropic version of X
for i = 1:m, %% remove current outliers
if Y(:,i)’*Y(:,i) > beta, X(:,i)=0, done = 0, end
end
end

As of the Spring of 2002, a java applet illustrating the outlier removal algorithm is available

at
http://theory.lcs.mit.edu/~ jdunagan/
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